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Abstract 

We generate magnetic field profiles via the simulation of one-
dimensional action potential propagation in excitable tissue. Magnetic field 
profiles are produced by a solitary neural and cardiac traveling action potential.  
To accurately model experimental action potential morphology for neural and 
cardiac tissue, we used the Hodgkin-Huxley and Beeler-Reuter equations 
respectively. We study and compare several simulated magnetic field profiles 
computed at specified distances from the theoretical tissue in which the action 
potential is propagating. The analysis of the magnetic fields in this forward 
problem reveals signatures of neural and cardiac electrical behavior. Our 
simulated results suggest that experimental magnetic field studies can be used 
to, non-invasively, determine electrical behavior in excitable tissue at the 
cellular level.     

1. Introduction 

Over the last two decades noninvasive techniques have been used to 
study electrical activity in excitable tissue. In the field of biomagnetism, a 
particular approach is to measure the magnetic field near the body, organ, or 
tissue, and determine the electrical sources within the tissue that produced the 
measured magnetic field. Mathematically, this poses an inverse problem, that is, 
given a magnetic field profile, determine the electrical sources and activity that 
produced the magnetic field. Basic questions that could be answered by the 
study of neural- or cardio-magnetism involve the determination of ectopic foci 
and tissue electrical properties (conductance, branching, or capacitance). 
Determining the electrical distributions responsible for the magnetic field is a 
difficult inverse problem. There are many different techniques that can be used 
to solve the inverse problem, for instance the least-squares method or Signal 
Space Projection analysis [1, 2]. In 2004, Amblard et al [3] studied biomagnetic 
source detection of distributed current sources on the cortical surface. Via an ill-
posed inverse problem addressed with in the frame work of the maximum 
entropy on the mean principal, they employed a regularization technique using a 
reference probability measure on random variables- Markov in nature- that 
quantify the intensity of current sources. However, there are many different 
electrical source distributions that can produce the same magnetic field profile. 

In this study we employ the forward problem, that is, the computation 
of magnetic field profiles generated by a known propagating action potential. 
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The forward problem plays an important role in the investigation and 
comparison of computed magnetic field profiles to identify signatures of 
electrical activity found in its associated magnetic field. The Hodgkin-Huxley 
[4] equations for neural tissue and Beeler-Reuter [5] equations for cardiac tissue 
have accurately modeled the experimental results for the action potential in 
neural and cardiac tissue. To accurately simulate the one-dimensional 
propagating action potential in neural and cardiac tissue we used the one-
dimensional reaction-diffusion equation, incorporating the Hodgkin-Huxley and 
Beeler-Reuter equations respectively. Magnetic field strength profiles were 
computed using the Biot-Savart law involving intracellular current only. The 
extracellular current and membrane current were not computed since their 
contribution to the magnetic field strength is negligible [6, 7].  

In 1996, Brio and Marchesin outlined a first step in their study of wave 
propagation in myocardial tissue [6]. They modeled two-dimensional action 
potential propagation via the reaction diffusion equation with FitzHugh-Nagumo 
[8] type and piecewise linear membrane dynamics.  FitzHugh-Nagumo and 
piecewise linear type membrane dynamics provide for a more qualitative 
investigation of the action potential and its propagation than the Hodgekin-
Huxley type membrane dynamics. However, the former does not provide for a 
detailed study of the contribution of individual species of ionic membrane 
currents to the action potential morphology and its propagation. Further, 
FitzHugh-Nagumo and piecewise linear type membrane dynamics produce 
action potential morphologies that are different from experimental data for 
excitable tissue.  

Recent modeling practices for computing biomagnetic fields are based 
on current dipoles and current dipole densities. Nervat et al [9], in 2004, applied 
a forward problem model that generated magnetic field profiles via electric 
dipole conduction in a theoretical head (brain and skull) model. They studied the 
sensitivity of simulated magnetic field recordings to perturbations in conduction 
of the head. In 2006, Wolfgang et al [10] computed magnetic field vectors via 
current density maps. Current density is taken to be a three dimensional 
distribution of electric dipole currents. While the modeling of biomagnetic fields 
via electric dipole current distributions allow for a qualitative study of 
biomagnatic fields and their sources, the current dipole does not relate the 
magnetic field to the action potential as a source, nor do current dipoles provide 
a means to study the biomagnetic field sensitivity to perturbations in specific 
ionic membrane currents. Magnetic fields produced by Hodgkin-Huxley type 
membrane dynamics allow for the detailed study of the influences of the action 
potential phases on the magnetic field morphology.  

In this paper, we compute the solution (action potential) to the reaction-
diffusion equation with a Hodgkin-Huxley type source term. The magnetic field 
is computed via an intracellular current that is a direct function of  the action 
potential.    



Journal of Mathematical Sciences & Mathematics Education Vol. 3 No. 2      3 

2. Method 

The Model 

A reaction diffusion equation was derived from a theoretical one-
dimensional fiber represented by a myocyte chain, see Figure 1. The biological 
environment of the myocyte chain in Figure 1 was quantified electrically where 
Ve  and Vi are the extra- and intracellular potential respectively, Ie  and I i  are 
the extra- and intracellular current respectively, and membrane current 
Im Ic I ion  is the sum of capacitive current and ionic currents. Here, we 
assumed that the extracellular potential Ve  is constant and that the electrical 
quantity for resistance of the extracellular environment is negligible in 
comparison to that of the intracellular invironment. We also assume that the cell 
membrane has a dielectric property and contributes a membrane capacitance to 
the bioelectric environment.  

Kirchoff’s current and voltage laws were used to derive a one-
dimensional reaction diffusion equation to model action potential propagation, 
Equation 1, 

Cm
Vm
t

1
Ri

2Vm

x 2 I ion  ,                         (1) 

where Vm Vi Ve  is the membrane voltage, Ri  is the intercellular resistance 
(constant), I ion  is the ionic current, and Cm  is the membrane capacitance 
(constant). The left hand term describes the capacitive current through the 
membrane and the first term on the right hand side describes the change in the 
intercellular current. 

The Crank-Nicholson method was used to numerically compute the 
traveling wave solutions Vm (x, t)  for equation (1). Hodgkin-Huxley [4] and 
Beeler-Reuter  [5] membrane dynamics were used for the source term I ion  in the 
computation of the traveling neural and cardiac action potentials respectively.  

Spatial and Time stepping Grid 

The spatial domain is a one-dimensional theoretical fiber of length L 
with Dirichlet boundary conditions and has a uniform grid containing N grid 
points. Suitable piece-wise linear distributions were used for the initial condition 
Vm(x,0) . The grid spacing is x L N . The Laplacian  2Vm x 2  was 
computed at the midpoint grid element x . The diffusion coefficient used in the 
computation is 2 where the space and time constants are  

Rmd
4 c

 and RmCm
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respectively. The membrane resistance is Rm , d is the cell diameter, c  is the 
cytoplasmic resistivity, and Cm  is the membrane capacitance. Parameters for the 
time and space constants are found in [11]. 

The scheme for time stepping involves the L  norm of a weighted 
Jacobian of the source term [11]. For each time step, t  was computed to 
prevent numerical instabilities and maintain the quality of the fast action 
potential rising phase and very large derivatives of the action potential. All 
computations were performed on a LINUX computer. 

Magnetic Field Strength Computation 

The Biot-Savart law was used to calculate the magnetic field strength 
H (t)  at a distance r  from the one-dimensional fiber conducting the propagating 
action potential, equation (2). Integral equations for the Biot-Savart law were 
numerically computed using the midpoint rule where the intracellular current 
I i Vm Ri  is a function of the action potential. 

H 1
4

I i r̂
r 2 .             (2) 

Results 

Neural Action Potential and Magnetic Field Profiles 

Illustrated in Figure 2 is the typical neural action potential reproduced 
by the Hodgkin-Huxley equations. We simulated the one-dimensional 
propagation of the neural action potential in figure 2 via equation 1 and used its 
spatial-temporal distribution, Vm(x,t) to produce magnetic field strength 
profiles. The neural action potential exhibits three phases- the rising phase from 
-60 mv to a 10 mv peak in approximately 1ms, the falling phase from 10 mv to -
100 mv in approximately 3 ms and the hyperpolarization phase from -100 mv to 
-90mv in approximately 15 ms. The derivatives of the rising and falling phases 
are on the order of 10 mv/ms and are very large relative to the derivative of the 
hyperpolarization phase, which is on the order of about 1 mv/ms.  

Figures 3 – 6 illustrate the time transient of the magnetic field strength 
magnitude computed at positions (x, y)  along the one-dimensional fiber where 
x , in centimeters, is the distance on the fiber from the beginning of the fiber and 
y , in centimeters, is a length perpendicular to the fiber. The magnetic field 

strength is in A cm.  Each time transient magnetic field strength profile was 
computed for the duration of its neural action potential propagation simulation.  
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It is known that the greatest contribution to the magnetic field is due to 
the relatively large derivatives of the traveling action potential and the 
significant axial current I i  that it produces. For the neural action potential these 
large derivatives occur during the rising phase and falling phase of the action 
potential. In Figure 2 the rising and falling phases, together, last for 
approximately 4ms and we expect significant axial currents during these phases. 
Note that the hyperpolarization phase of Figure 2 lasts for a duration of 
approximately 15 ms where the derivative of the action potential is significantly 
less than the derivatives of the rising and falling phases. We expect that axial 
currents produced by the hyperpolarization phase will be significantly less than 
axial currents produced by the rising and falling phases.  

In Figure 3 the magnetic field strength was computed at a theoretical 
position (2.25, 1) and produced by a traveling neural action potential traveling in 
a straight line. The two maxima in the magnetic field strength are a result of 
axial currents produced by large derivatives, rising and falling phases. Also note 
two minima, the first produced by the zero derivative action potential peak and 
the second minimum produced by the small derivative of the action potential 
repolarization phase. Figure 4 is the magnetic field strength computed at the 
position (2.25, .25). The peak-to-peak distances in magnetic field strength in 
Figure 4, on the order of hundreds of micro amps per centimeter, are larger in 
magnitude than the peak-to-peak magnitudes shown in Figure 3, order 10 

A cm. The computation for Figure 4 was taken at a position closer to the 
current conducting fiber, .25cm, than the computation for Figure 3, computed at 
a distance of 1cm from the fiber. An artifact, the small -700 A cm peak, in 
Figure 4 is a result of a perturbation at the on-set of the action potential 
simulation.  

The magnetic field strength illustrated in Figure 5 was computed at the 
position (2.24, 4). Computation of the magnetic field at a position further away 
from the conducting fiber, at 4cm, produced peak to peak magnitudes in the 
magnetic field strength that are on the order of a micro amp per centimeter - 
significantly less than peak-to-peak magnitudes found in Figures 3 and 4. There 
are three maxima and two minima in the magnetic field strength of Figure 5. In 
the upper left-hand corner of  

Figure 5 the grouped magnitudes of the first two maxima are 
approximately 1 A cm apart in magnitude, with a local minimum, between, 
whose magnitude is  
1 A cm apart from the second maximum. At a distance of 4cm from the 
conducting fiber, that point experiences the net contribution of the high 
derivatives of the rising and falling phases of the action potential, the result is 
the grouped extrema illustrated in Figure 5. For the magnetic fields computed at 
positions closer to the conducting fiber, illustrated in Figures 3 and 4, the 
individual contributions of the large derivatives of the rising and falling phases 
are observed. 
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Figure 6 illustrates the magnetic field strength computed at the point (5, 
.25). Here, the magnetic field strength maximum occurs 40ms after the start of 
the action potential propagation simulation indicating that the action potential 
pulse took 40ms to travel 5cm. In Figure 4 the magnetic field strength maximum 
occurs 20 ms after the start of the action potential propagation simulation 
indicating that the action potential pulse took 20 ms to travel 2.25 cm. The 
velocity of the propagating action potential is 1.125 m/s in the simulations for 
Figures 4 and 6, which is in the range of action potential velocities for Purkinje 
fibers and skeletal muscle fibers, 1 m/s and 6 m/s respectively [12]. In Figures 3 
– 6 note the small global minimum in the magnetic fields produced by the 
relatively small derivative of the hyperpolarization phase of the neural action 
potential.  

Figure 7 illustrates the magnetic field strength computed at the point 
(2.25, 1) and produced by the propagation of two neural action potentials 
beginning at opposite ends of the conducting fiber and colliding. The magnetic 
filed profile reveals that the two action potentials overlap at the position 2.25cm. 
In terms of peak-to-peak temporal magnitudes and morphology, the magnetic 
filed profile of Figure 7 is similar to that of Figure 3, except for several cusps in 
the graph of Figure 7. This suggests that the overlapping neural action potential 
produced a net time varying neural action potential, Vnet(2.25,t), at position 
2.25cm. Note the cusps in the magnetic field profile at approximately 2ms, 
32ms, and 35ms after the start of the simulation. The cusp at 35ms yields a 
minimum. The cusps in the magnetic field profile at position (2.25, 1) for the 
indicated times suggests that there were jump or infinite discontinuities in 
Vnet(2.25,t) at position 2.25cm, for those respective times. We rule out infinite 
discontinuity in the morphology of Vnet(2.25,t)since the simulation is discrete 
and finite in nature.  

The overlapping action potential simulation in this paper is an 
extension of and corroborates with a discussion of the biological effects of 
overlapping and non-overlapping action potentials, found in Silverthorn [13].  
The discussion in the human physiology text by Silverthorn considers two cases 
for general types of action potential interaction. In one case two subthreshold 
action potentials reach a position on a neuron- one after the other. The time 
interval between the two subthreshold action potentials is sufficiently long so 
that the two action potentials do not overlap and there is no net action potential 
produced at the position in question. The second case considers two 
subthreshold action potentials that do overlap at a position on a neuron and have 
a summation effect to produce a net action potential at the position in question. 

Cardiac Action Potential and Magnetic Field Profiles 

Illustrated in Figure 9 is the typical cardiac action potential reproduced 
by the Beeler-Reuter equations. We simulated the one-dimensional propagation 



Journal of Mathematical Sciences & Mathematics Education Vol. 3 No. 2      7 

of the cardiac action potential in figure 9 via equation 1 and used its spatial- 
temporal distribution, Vm(x,t) to produce magnetic field strength profiles. The 
cardiac action potential exhibits tree phases- the rising phase from -80 mv to a 
20 mv peak in approximately 10ms, the plateau phase from a 20 mv peak to 5 
mv in approximately 68 ms, and a falling phase from 5 mv to -80 mv in 
approximately 100 ms. The derivative of the rising phase is on the order of  10 
mv/ms and is very large relative to derivatives of the other two phases. The 
derivative of the plateau phase is on the order of .1 mv/ms and the falling phase 
is on the order of 1 mv/ms. The relatively small derivative of the plateau phase 
suggests its name.  

Figures 10 – 12 illustrate the time transient of the magnetic field 
strength magnitude computed at positions (x, y)  along the one-dimensional fiber 
where x , in centimeters, is the distance from the beginning of the fiber and y ,
in centimeters, is a length perpendicular to the fiber. Distances are in centimeters 
and magnetic field strength is in A cm.  Each time transient magnetic field 
strength profile was computed for the duration of its cardiac action potential 
propagation simulation.  

We expect that the greatest contribution to the magnetic field will be 
due to the relatively large derivatives of the traveling cardiac action potential 
and the significant axial current I i  that it produces. For the cardiac action 
potential the large derivative occurs during the rising phase, about 10 ms in 
duration. The derivative of the plateau is negligible and falling phase derivative 
small, relative to the rising phase. We expect that axial currents produced by the 
plateau and falling phases will be significantly less than axial currents produced 
by the rising phase. 

All magnetic field profiles in Figures 10 – 12 exhibit one maximum 
that reflects the strong axial current produced by the large rising phase 
derivative. Two maxima, as exhibited in the magnetic field profiles generated by 
the traveling neural action potential, are not present in the magnetic fields 
generated by the traveling cardiac action potential. The difference in the 
magnitudes of the magnetic fields depicted in Figures 10 – 12 reflect the 
difference in the distances from the conducting fiber, at which, the magnetic 
fields were computed. Magnetic fields for Figures 10, 11, and 12 were computed 
at (2.25, 1), (2.25, .25), and (2.25, 4) respectively. The magnetic field in Figure 
11 computed at (2.25, .25) exhibits the greatest magnitude. The magnetic field in 
Figure 12 computed at (2.25, 4) exhibits the smallest magnitude with the 
magnetic field in Figure 10 being intermediate in magnitude. The morphology of 
the magnetic field computed nearer the conducting fiber, Figure 11, closely 
resembles the morphology of the cardiac action potential in Figure 9. The 
magnetic field in Figure 10 has a relatively narrow morphology and the 
magnetic field profile in Figure 12 exhibits a relatively broad morphology. 
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Figure 13 depicts the time transient of the magnetic filed strength at a 
position (-2.25, 2.25, 1) produced by a cardiac action potential traveling on a 
circular path centered at the origin. The circle has radius 5 cm  and x , y , and z
coordinates are in centimeters with the x- y  coordinates in the plane of the 
circle and the z coordinate above the circular plane. Point  
(-2.25, 2.25, 0) is on the circle. At the on-set of the magnetic field time transient 
in Figure 13 there is a maximum. From approximately 150 ms to 300 ms the 
magnetic field is near its minimum. At 450 ms the magnetic field returns to its 
maximum. The profile of the magnetic field allows us to track the location of the 
rising phase of the cardiac action potential as the action potential travels around 
the circle. The magnetic field maximum at t 0 ms indicates that the rising 
phase was at the position (-2.25, 2.25) on the circle. From approximately 150 ms 
to 300 ms the action potential rising phase was at a position on the circle 
sufficiently far from the point (-2.25, 2.25), which is reflected in a minimized 
magnetic field at the point (-2.25, 2.25, 1). In 450 ms the rising phase of the 
action potential returns to the position (-2.25, 2.25), reflected by a maximum in 
the magnetic field. The circumference of the action potential path is 10 cm 
which suggests that the action potential traversed its path in approximately 450 
ms. The speed of the cardiac traveling action potential is approximately .222 
m/s.   

The average speed of the propagating cardiac action potentials, 
computed from data in Figures 10 – 13, is 0.46 m/s, which is near that of the 
cardiac action potential speed for cardiac muscle, 0.5 m/s [12]. 

Conclusion 

This paper presented various magnetic field profiles produced by the 
simulation of a solitary one-dimensional traveling action potential, cardiac and 
neural. The time transient morphology for both the cardiac and neural action 
potentials in our simulations are biologically accurate. Further, the propagation 
speeds of the simulated traveling action potentials are near to the speeds of 
experimentally measured action potentials for neural and cardiac tissue.  The 
magnetic field profiles in this paper have not been verified experimentally; 
however, the biological soundness of the traveling action potential simulations 
performed in this research informs us on how to investigate magnetic behavior 
at the cellular level. These simulations may be applied to the study of 
biomagnetic fields produced by the action potential propagation across 
boundaries between different types of excitable tissue. Also, for various 
branching systems, magnetic field detection at branching points may be 
investigated.  
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Figure 1. Myocyte Chain. A one-dimensional fiber connected end   to end 
via gap junctions. 

Figure 2.  The time course for the neural action potential.  Membrane 
voltage (mV )  vs. time (ms) .

Figure 3.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, 1) (cm)produced by a neural action potential traveling in a 
straight line. 
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Figure 4.  Magnetic field strength ( A cm)  vs. time (ms) measured at 
position (2.25, .25) (cm)produced by a neural action potential traveling in a 
straight line. 

Figure 5.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, 4) (cm)produced by a neural action potential traveling in a 
straight line. 

Figure 6. Magnetic field strength ( A cm)  vs. time (ms) measured at 
position (5, .25) (cm)produced by a neural action potential traveling in a 
straight line. 
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Figure 7.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, 1) (cm)produced by two neural action potentials traveling 
towards each other in a straight line and colliding. 

Figure 9.  The time course for the cardiac action potential. Membrane 
voltage (mV )  vs. time (ms) .

Figure 10.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, 1) (cm)produced by a cardiac action potential traveling in a 
straight line. 
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Figure 11.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, .25) (cm)produced by a cardiac action potential traveling in 
a straight line. 

Figure 12.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (2.25, 4) (cm)produced by a cardiac action potential traveling in a 
straight line. 
                             

                                                        
Figure 13.  Magnetic field strength ( A cm)  vs. time (ms)  measured at 
position (-2.25, 2.25, 1) (cm)produced by a cardiac action potential 
traveling on a circular path of radius 5 cm  centered at the origin. 

† Brett A. Sims, Ph.D., Grambling State University, Louisiana, USA
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