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Abstract 

 
 Many integer sequences are recursive sequences and can be defined 
either recursively or explicitly by use of Binet-type formulas.   Explorations 
with Binet’s formula can lead to new and interesting recursive sequences.   
Among these sequences are the side and diagonal numbers of a square.   Many 
relationships exist between these two sequences in the same way that numerous 
relationships exist between the Fibonacci and Lucas sequences.  This paper 
provides a technique for generating many Binet formulas and thus creating 
many formulas that can be proved by mathematical induction to generate their 
respective recursive sequences. The mathematics in this paper can be described 
as educational mathematics and as such, occupies a crucial place in 
undergraduate mathematics education in that the methods employed here foster 
student gains in logical reasoning, inductive and deductive reasoning, and 
understanding of mathematical induction. The author has successfully used the 
mathematical content of this paper in classes in discrete mathematics taken by 
first-year students in college. 
 

Introduction 

Integer sequences have been studied in number theory for hundreds of 
years. Two well-known sequences are the Fibonacci and Lucas sequences.  Both 
can be defined recursively and can be defined explicitly using Binet’s formulas.  
These sequences are special cases of generalized Fibonacci sequences. Less well 
known are the integer sequences of the side and diagonal numbers of the square.  
These are special cases of generalized Fibonacci sequences and can also be 
defined recursively or with Binet-type formulas. Although it is a straightforward 
exercise using mathematical induction to prove that Binet’s formulas do produce 
the sequences desired, it is not obvious as to how such Binet formulas are 
obtained. An analysis of the Binet-type formula shows why it works for a 
recursive sequence and also how other recursive sequences can be developed.   

 
Generalized Fibonacci Sequences 

 
           Generalized Fibonacci sequences Gn are usually defined recursively [2, p. 
1] as a sequence of positive integers such that for positive integers a, b, c, and d,  

 
G1 = a, G2 = b, and Gn+1 = cGn-1+dGn for all n ≥  2. (1) 

If a=b=c=d=1, the sequence is the Fibonacci sequence {Fn}.   If a=c=d=1 and 
b=3, the sequence is the Lucas sequence {Ln}. Fibonacci and Lucas sequences 
can be defined explicitly using Binet’s formulas: 
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Fn = 
βα
βα

−
− nn

  for all n ≥  1,           (2) 

Ln = nα  + nβ  for all n ≥  1,       (3) 

where α  = 
2

51+
  and β = 

2
51−

 [3, p. 272-3].   

Fibonacci-type sequences arise in many places [4, p.283].  In their discovery of 
the incommensurability of the diagonal of a square to the side of the square, the 
Pythagoreans used integer sequences of lengths in the constructions of the side 
and diagonal lengths [5, p. 2]. Serendipitously, these sequences are examples of 
Fibonacci-type sequences, and the side numbers {an } and the diagonal numbers 
{dn} can be defined recursively  using (1) above:  for {an }, let a=c=1 and b=d=2 
and for  
{dn }, let a=c=1, b=3, and d=2.   Thus, {an} is defined by  
a1=1, a2 =2, an+1 = 2an + an-1 for all n ≥  2,  (4) 
 
and the sequence {dn} is defined by 
 

d1=1, d2 =3, dn+1= 2dn + dn-1 for all n ≥  2,   (5). 
 
Explicit representations of the sequences can be found using “Binet-type” 
formulas. 

 
The Binet Formula 

 
 Suppose α = 1 + k   and β = 1 - k , where k is a positive integer.  
If we assume that some integer sequence {xn}  is defined by a Binet formula 
using these numbers, then one possibility is that  

xn =
βα
βα

−
− nn

for all n ≥  1,        (5) 

which in this case would mean that  

xn =
k

kk nn

2
)1()1( −−+

 for all n ≥ 1.   (6) 

An explanation needs to be given to justify that the formula given in (6) will 
produce an integer for each positive integer k and for each positive integer n. 
 Using the binomial theorem to expand the numerator in (6), we have   

 
In the preceding sum, when i is even, since , the even terms 
vanish.  Thus, for all odd integers i,  , the preceding sum becomes 
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 , since i-1 is even, 

; 
 

 . 
 
Hence, the formula given in (6) becomes 
 

 
which is clearly an integer.  Notice that if 
 

 
for any positive integer m, one can show via a similar argument that the formula 
generates an integer sequence.  One can also use strong mathematical induction 
on n to establish the result for any fixed positive integers m and k. 

Using the formula given in (6) one discovers that the first four terms of sequence 
{xn} are x1 = 1, x2 = 2, x3 = 3+k, and x4 = 4+4k.   If one assumes that there is a 
recursive definition for the sequence {xn}, so that {xn} is a Fibonacci-type 
sequence, we need only solve for c and d in (1). This leads to the fact that 

c + 2d = 3 + k, and 
2c+ d (3+k)=4 +4k.     (7) 

 
Solving the system of equations for c and d leads to the result that 
d=2 and c= k-1.  So {xn} is defined recursively as follows: 
x1 = 1, x2 = 2, xn+1 = 2xn + (k-1)xn-1for all n ≥  1. 
 
Thus, if we let k=2 it follows that the Binet formula for the integer sequence of 
side number in (4) is given by 

an =
22

)21()21( nn −−+
for all n ≥  1, (8) 

 a result that is obtained by substituting 2 for k in the equation in (6).     
Another possibility for constructing a Binet formula is to change the 

values used for α  and β.  For example, if  



 

Journal of Mathematical Sciences & Mathematics Education, Vol. 4 No. 1     4 

α = 
2

1 k+
, β=

2
1 k−

, and these values are substituted into (5), it follows 

that a new sequence {yn} is formed and {yn} has the property that 

    yn = 12 −n
nx

 for all n ≥  1. (9) 

Using the result in (9) it can easily be found that the first four terms of {yn} are 
y1 = 1, 

 y2 = 1,y3 =
4

3 k+
, and y4= 

2
1 k+

.    Now it becomes apparent that {yn} will be 

an integer sequence only for certain values of k, namely k = 4m +1, where m is 
some positive integer. If a recursive Fibonacci-type sequence for this choice of α 
and β is assumed then the values of c and d in (1) are d = 1 and  
c = ¼ (k- 1).  Thus, one can see that the choice of k for the Fibonacci sequence 
must be the integer 5 so that c = 1 as well as d = 1.  This produces the well-
known formula given in (2).   
 Another choice for constructing Binet formulas would be to use the 
addition form  

xn = nα  + nβ  for all n ≥  1.   (10) 

If α = 1 + k   and β = 1 - k , then x1 = 2, x2 = 2+2k, x3 =2+6k, and  
x4 = 2 + 12k + 2k2.   
Because all the terms have a factor of 2,  the form in (10) is changed to  

xn = ½ ( nα  + nβ ) for all n ≥  1.  (11) 
Now the first four terms of the sequence will be x1 = 1, x2 = 1+k, x3 =1+3k, and  
 x4 = 1 + 6k + k2.  Assuming a recursive, Fibonacci-type sequence, one can use 
these first four terms and solve for the positive integers c and d in (1): 

c+d(1+k) = 1 + 3k 
c(1+k)+d(1+3k)= 1 + 6k + k2. 

 
Solving these equations simultaneously for c and d reveals that c = k-1 and d = 
2.   If k=2, then the first four terms of the sequence will be 1,3,7, and 17.  These 
are the first four terms of the diagonal number sequence in (5).  Since the 
diagonal number sequence is a recursive Fibonacci-type sequence, the Binet 
formula for the diagonal number sequence in (5) is 

dn = ½ [(1 + 2 )n  + (1 − 2 ) n] for all n ≥  1.  (12) 

 If, on the other hand, one’s choices for α and β are α = ½ (1 + k ) and  

β = ½(1 - k ), one can use the result in (9) to find that the first four terms of 
the integer sequence are 1, ½ (1 +k), ¼ (1+3k), and 8

1 (1+6k+k2).  Again, only 
certain positive integers k will yield an integer sequence, namely k = 4m+1, 
where m is any positive integer.  Solving for c and d in (1) results in c= ¼ (k-1) 
and d= 1.  If k=5, then one gets that c=1 and d=1, and the well-known Binet 
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formula for the Lucas sequence in (3) is obtained.   For other choices of k= 4m 
+1 such as k=13 or 17, other sequences are obtained.1  
 

Connections between the Side and Diagonal Numbers 
 
Just as there are many connections between the Fibonacci and Lucas 

numbers [1, pp. 67-72] the same is true for the side and diagonal numbers.   For 
example, 

2andn = a2n for all n ≥  1. (13) 
Although a proof by induction is not difficult, a simple algebraic proof can be 
given using the Binet formula for the side numbers in  (8) and that for the 
diagonal numbers in (12). Using those two formulas the proof goes as follows: 
For all n ≥  1,  

  2andn = 2[
22

)21()21( nn −−+
][

2
)21()21( nn −++

]  = 

22
)21()21( 22 nn −−+

 = a2n ,  and the proof of the result in (13) is 

complete. Just as the Binet formulas aid in establishing proofs of connections 
between the Fibonacci and Lucas sequences, they play the same role in 
establishing connections between the side and diagonal numbers. 

 
Constructing Recursive Fibonacci-type Sequences and their Binet Formulas 
 
Using the same proof techniques as before, we can easily obtain the following  
Theorem:  If m and k are positive integers such that k  ≥  m2 + 1 and 

yn =  
k

kmkm nn

2
)()( −−+

for all n ≥  1, and  {xn} is a recursive 

Fibonacci-type sequence defined as x1 = 1, x2 = 2m, and xn+1 = (k – m2) xn-1 + 
(2m)xn for all n ≥  2, then {xn}={yn}.  

    
Note:  Before proving the theorem, this note of clarification is given.   The proof 
of the theorem consists of two parts.   First, it is proved that the Binet formula 
generates the sequence {xn}.  Then it is proved that the sequence {yn} must be 
the same sequence as {xn}; that is {yn}= {xn}.   
Proof of Theorem:  Suppose {xn} is a recursive Fibonacci-type sequence defined 
in the statement of the theorem.  The proof is by induction. For the case n=1,  

x1 = 1 = 
k

kmkm
2

)()( 11 −−+
.  If we assume that   

xn =  
k

kmkm nn

2
)()( −−+
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for all positive integers n such that 1≤  n  ≤   j where j is some positive integer, 
then 

xj+1 = (k – m2) xj-1 + (2m)xj = (k – m2)[ 
k

kmkm jj

2
)()( 11 −− −−+

] + (2m)[ 

k
kmkm jj

2
)()( −−+

] 

=
k
km j

2
)( 1−+

[(k – m2) + )( km+ (2m)] + [(k – m2) + )( km− (2m)] 

= 
k
km j

2
)( 1−+

[k + 2m k  + m2] - 
k
km j

2
)( 1−−

[ k - 2m k  + m2] 

= 
k
km j

2
)( 1−+

(m+ k )2 - 
k
km j

2
)( 1−−

( m - k  )2 

=
k
km j

2
)( 1++

 - 
k
km j

2
)( 1+−

 = 
k

kmkm jj

2
)()( 11 ++ −−+

 . 

 
Thus, the preceding part of the proof by mathematical induction 

establishes the fact that this Binet formula generates the recursive sequence 
{xn}.   This induction proof shows that the recursive sequence {xn}defined in 
this theorem has this Binet formula.   

Now suppose we consider the sequence {yn} this Binet formula 
produces.   In the induction proof it was verified that when n =1, the Binet 
formula generates the first term of the defined recursive sequence {xn}, namely 
1. Likewise, for n=2 the Binet formula generates the second term, namely 2m.  
In the induction step of the proof above it was shown that  

(k–m2)[ 
k

kmkm nn

2
)()( 11 −− −−+

] + (2m)[ 
k

kmkm nn

2
)()( −−+

] 

=
k

kmkm
nn

2
)()(

11 +

−−+ +

, and this result holds for all n ≥  1.  So this 

would say that (k – m2) yn-1 + (2m) yn = yn+1.  But this is precisely the way the 
recursive sequence {xn} was defined.   So the sequence the Binet formula 
produces is a recursive Fibonacci-type sequence defined in the same way {xn} is 
defined, and hence, {xn} = {yn}. So the only sequence the Binet formula 
produces is the given recursive sequence. ( Note:  We could also argue that {xn} 
is the only sequence that the Binet formula generates because 

k
kmkm nn

2
)()( −−+

 is a function of n, and thus can generate only one 
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value for each value of n, and so the Binet formula can generate only one 
sequence, and that sequence from the induction argument is {xn}.) 

By using various choices for m and k, one can generate many 
Fibonacci-type sequences and their corresponding Binet formulas.   See table I 
for some examples.   In this table the values of m are the first 15 positive 
integers and k = 3(m2 +1).  

Conclusion 
 
Recursive Fibonacci-type sequences have Binet-type formulas that can 

aid in constructing simple algebraic proofs of  many properties of the sequences.   
Explorations with Binet formulas remove some of the mystery as to how these 
formulas arise.  Side and diagonal numbers have yet many connections to be 
discovered. Binet formulas will be extremely beneficial in constructing proofs of 
such connections.  Research of this nature can provide questions for students to 
investigate, and thus can serve as resources for mathematics teachers who are 
looking for sequences that are accessible to students with limited background 
and preparation. 
 
† Homer W. Austin, Ph.D., Salisbury University, Maryland, USA 
‡ Jathan W. Austin, University of Delaware, Delaware, USA 
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Table I:  Recursive Fibonacci-type Sequences 
 

m k c d X1 X2 X3 X4 Definition of 
Sequence 
Xn+1 =c Xn-1 +d Xn 

Binet Formula 

Xn =
k2

)km()km( nn --+
 

1 6 5 2 1 2 9 28 X1 =1, X2 =2 
Xn+1 =5 Xn-1 +2 Xn Xn =

62
)61()61( nn --+

 

2 15 11 4 1 4 27 152 X1 =1, X2 =4  
Xn+1 =11 Xn-1 +4 Xn Xn =

152
)152()152( nn --+

 

3 30 21 6 1 6 57 468 X1 =1, X2 =6  
Xn+1 = 21Xn-1 +6 Xn Xn =

302
)303()303( nn --+

 

4 51 35 8 1 8 99 1072 X1 =1, X2 =8  
Xn+1 =35 Xn-1 +8Xn Xn =

512
)514()514( nn --+

 

5 78 53 10 1 10 153 2060 X1 =1, X2 =10 
 Xn+1 = 53Xn-1 +10 Xn Xn =

782
)785()785( nn --+

 

6 111 75 12 1 12 219 3528 X1 =1, X2 =12 
Xn+1 =75 Xn-1 +12 Xn Xn =

1112
)1116()1116( nn --+

 

7 150 101 14 1 14 297 5572 X1 =1, X2 =14 
Xn+1 =101Xn-1 +14Xn Xn =

1502
)1507()1507( nn --+

 

8 195 131 16 1 16 387 8288 X1 =1, X2 =16 
Xn+1 =131Xn-1 +16Xn Xn =

1952
)1958()1958( nn --+

 

9 246 165 18 1 18 489 11772 X1 =1, X2 =18 
 Xn+1 =165 Xn-1 +18Xn Xn =

2462
)2469()2469( nn --+

 

10 303 203 20 1 20 603 16120 X1 =1, X2 =20 
Xn+1 =203Xn-1 +20Xn Xn =

3032
)30310()30310( nn --+

 

11 366 245 22 1 22 729 21428 X1 =1, X2 =22,  
Xn+1 = 245 Xn-1 +22 
Xn 

Xn =
3662

)36611()36611( nn --+
 

12 435 291 24 1 24 867 27792 X1 =1, X2 =24 
Xn+1 =291 Xn-1 +24Xn Xn =

4352
)43512()43512( nn --+

 

13 510 341 26 1 26 1017 35308 X1 =1, X2 =26 
Xn+1 =341 Xn-1 +26 Xn Xn =

5102
)51013()51013( nn --+

 

14 591 395 28 1 28 1179 44072 X1 =1, X2 =28 
Xn+1 =395Xn-1 +28Xn Xn =

5912
)59114()59114( nn --+

 

15 678 453 30 1 30 1353 54180 X1 =1, X2 =30 
Xn+1 =453 Xn-1 +30 Xn Xn =

6782
)67815()67815( nn --+

 

 

 


