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Abstract 

Advancements in chemical and biological agents allow human life to 
be elevated to a whole new higher level, yet in wrong hands their use had 
produced devastating results in past. Unarguably it is vital to develop methods to 
track and trace the origin of hazardous contaminant particles in order to 
minimize the damages they are capable of causing, and contain their ill effects. 
Here we consider the problem of devising filtering methods in order to estimate 
the origin of contaminant particles using information gathered from a finite 
number of sensors 
 

Introduction 

The Kalman filter is the optimal solution to the Bayesian estimation 
problem for a given linear, stochastic, state-space system with additive Gaussian 
noise. Closed form solution have been derived for the aforementioned problem 
and have been extremely popular in the past [2], [3]. However, if the actual 
dynamical system drifts from a linear dynamical system or assumptions on 
characteristics of noise are incorrect, the filter tends to diverge. A variety of 
algorithmic modifications were invented in an attempt to compensate for the 
model errors that caused the misbehavior of the filter. This issue had been 
addressed to some extent by Extended Kalman Filter where an approximated 
linear system is derived for every calculation step. The practicality of this 
approach has limited application to large complicated dynamical systems. Other 
techniques such as Uncented Kalman filter, Gaussian sum filter also suffer from 
the similar shortcomings as they either directly or indirectly use Kalman 
estimation techniques. 
 

In recent years, computational power has reached to an extraordinary 
peak that one can implement algorithms once discarded due to their extensive 
computational cost. One type of powerful algorithm that resurfaced in recent 
years is the particle filter (PF) algorithm (Sequential Monte-Carlo algorithms) 
[6]. Recently particle based sampling filters have been proposed and used 
successfully to recursively update the posterior distribution of { }( )1/k kp x y y…  

using sequential importance sampling and resampling. In contrast to Kalman 
filters particle filters in general can be used with non-linear, non-Gaussian 
dynamical systems. However, it needs to use a large amount of samples 
(particles) for a robust operation and accurate estimation which in many cases 
can be computationally expensive. 
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In our problem, we need to estimate the initial state 0x  by processing the 

observations { }1 ky y…  available up to t k= . This class of problems is tends to 
be more difficult and computationally more expensive. The beauty of particle 
filters is that it provides a solution to the localization problem and it exhibits 
excellent results. 
 

Since particle filters inherently computationally expensive modification 
to the algorithm as well as to implementation have been done to dramatically 
reduce computational time. It is shown in this paper that convergence of the 
solution well within practical limits of containment or evacuation. 
 

Particle Filtering 

Consider the following discrete time non-linear system 
1 ( )

( )
k k k

k k k

x f x
y g x

ω
θ

+ = +

= +
 

where ,n d
k kx R y R∈ ∈  and ,k kω θ  are independent noise processes of 

appropriate dimensions. It is assumed that the initial distribution 0x  is 

independent of kω  and kθ . Mean and variance of ,k kω θ  are assumed to be 
known. Here we consider the Markovian state space models where state of the 
system kx  depend only on the previous state 1kx −  in a probabilistic sense. 
 

It is assumed that the probability distribution of 0x  is 0( )p x  and the 

distribution for the transition is 1( | )k kp x x − . It is also assumed that the 

conditional distribution of the outputs is ( | )k kp y x . 
 

The particle filter is to estimate the distribution ( | )k kp x Y  using 
posterior probability distribution ( | )k kp Y X  with { }0 1, , ,k kX x x x= …  

and { }1 2, , ,k kY y y y= … . Then it allows us to calculate any optimal estimate of 
the state, such as the conditional mean  

� [ ] ( )| |k k k k k kx E x Y x p x Y dx= = ∫  

 
Bayes' rule can be used to rearrange the posterior distribution, 

( ) ( ) ( )
( ) ( )

|
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p X Y

p Y X p X dX
=
∫

 

A recursive formula for the aforementioned can be obtained as follows [6]: 
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distribution of ( | )k kp x Y  can be calculated as follows: 
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Particle filter (PF) is an approximation that uses sequential Monte Carlo 
methods to reach a solution with a finite number of calculations. 
 

When the initial state is unknown, and needs to be found, the initial 
distribution is approximated by a uniform distribution over an appropriate region 
of the state space. Following steps describe the algorithm in detail. 
 
Algorithm Particle Filtering 
Step 1 

• Draw N samples 0x  from the state space with importance weights=1/N 
and set t = 1  

Step 2 

• Draw N samples �
( )i
tx  from ( )( )

1| i
t tp x x −  1, ,i N= …  

• Evaluate the importance weights �( )( )( ) |
ii

kk kw p y x=  

• Normalize the weights 
Step 3 

• Resample with replacement N particles from �
( )i
tx  according to the 

weights 
• Set 1t t→ +  and go to step 2 

Conditional probability of each particle ( �
( )i
tx ) at t=k is changed at step 2. 

Resampling in step 3 is based on the weights associated with the particles that 
could result in small, average and large values according to the conditional 

probability. Resampling draws N samples from �
( )i
tx  1, ,i N= …  by repeating 

the particles with larger weight and removing the ones with smaller weights. 
Even though this step improves the resolution of the area with higher 
probability, it does not improve the accuracy of the initial state 0x . 
 

Brownian Motion 

Dispersion of small solid and gaseous particles plays an important role 
in many natural processes and environments and lead to the formation of 
complex structures. As such processes are very hard to model detailed empirical 
work on the physical conditions and the parameter space for a variety of 
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different dispersion scenarios is needed.  
In the past few years, particle dispersion in buildings and urban areas 

has received increasing attention from the scientific community. Knowledge and 
technology of chemical and biological particle dispersion are still far from 
mature and much can be done by increasingly understanding the underlying 
physics of the different practical applications. A number of recent successful 
theories of particle transport are based on the ideas of Brownian motion [1]. 

Consider a foreign particle immersed in a flow of dense fluid. The 
trajectory of such particle follows an irregular and random path. The force on 
such a particle is regarded to be the result of two components. First one is the 
frictional force due to the drag extended on the particle and the other being the 
fluctuating force, ( )A t′ . If u  represents the velocity of the particle then the 
frictional force is assumed to be proportional to u . Using the Stoke's law it is 
calculated to be uγ ′−  where γ ′  is the frictional constant. γ ′  is given by 
6 aπ η , where  η  is the viscosity of the medium and a  is the radius of the 

particle. The random force ( )A t′  represents the continuous collision the 
particle with the particles in immersed media. Using Langevin equation:  

( )dum u A t
dt

γ ′ ′= − +  

where m  is the mass of the particle. The above equation can be expressed as, 

( )du u A t
dt

ς= − +   (1) 

where / mς γ ′=  and ( ) ( ) /A t A t m′= . The following assumptions are 
crucial for the solution of (1). 

1) The mean of the fluctuating force ( )A t  over the ensemble of particles 

starting with the same initial velocity 0u  at 0t =  is zero. i.e. 

{ }( ) 0E A t =  

2) It is assumed that ( )A t′  is independent of u . The values ( )A t  at two 

different times 1t  and 2t  are not correlated except for small intervals 

1 2( )t t−   

{ }1 2 1 2( ) ( ) (| |)E A t A t t Tφ= −  
where ( )xφ  is a function with a very sharp maximum at 0x = , ( )xφ  
being very small for 0x ≠  

3) The correlation of ( )A t  obey the following: 
{ }
{ }

{ } { }
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Assumption (2) describes the sampling interval of time tΔ  during which, rapid 
changes to ( )A t  is expected where as changes in ( )u t  is expected to be very 
small. To solve the above equation, we must solve a stochastic differential 
equation. That is the probability of the solution 0( , ; )W u t u  is u  at the time t , 

given 0u u−  at 0t = . It can be shown that probability distribution of W  is 
Gaussian. 

Using the knowledge of linear first order differential equations we can solve 
equation (1) 

0 ( )t tu u e e e A dς ς ςτ τ τ− − −= + ∫ . 

Since an analytical solution involves rigorous calculations, a numerical solution 
is adopted in many situations. 
Rewrite (1), 

1 1 ( )k k k k k ku u u t A tς σ− −− = − Δ + Δ  
where 1k k kt t t −Δ = − . Then  

1 (1 ) ( )k k k k ku u t A tς σ−= − Δ + Δ  
and this can be solved iteratively. 
 

Simulations & Results 

Flow inside a building is defined by the Navier-Stokes equations which 
can be found in any standard text book in fluid mechanics [4], [5]. Three 
dimensional (3D) fluid flow is analyzed using software Airpak/Fluent. Models 
are created and solved to extract the velocity information of the fluid flow 
within the framework. Data is extracted for node points in the space of fluid 
flow that are not necessarily placed in an equally spaced grid. Data is exported 
into Matlab where it is processed and placed in a multi-dimensional array that 
represents an equally spaced grid. This is done by approximating the velocities 
in and in z  direction using spline curves. It is assumed that the origin of 
contaminant is within the scope of one or more sensors. A fair estimate of the 
number of particles released is also assumed to be known. 

For simulation purposes we consider a three dimensional room with 
length 20 meters, width 20 meters and height 10 meters. Figure 1 shows the 
fluid flow inside the room while table 1 shows the system parameters. 
Contaminant particles are introduced at coordinates 4.0x = , 6.0y = , 14.0z = . 
Figure 2 shows the contaminant transport for 100 particles. Six sensors are 
placed to record the contaminant concentration at locations given by (6,4,0.0), 
(0.0,7.5,10.0), (6.5,5.0,20.0), (20.0,2.5,10.0), (10.0,0.0,10.0), (3.5,7.0,15.0). 
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Figure 1 
Fluid flow in a 3D room 

 

 
 
 

Figure 2 
Contaminant dispersion inside a room 

 

 
 

 
 

Table 1 
System Data 

Name of the parameter Value 
time step 0.15 sec

Process noise variance 0.05
System noise variance 0.05

velocity coefficient 0.25
random coefficient 1.00 

 
The sensor characteristics for these examples are described by 
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2 2 2( ) ( ) ( )

1

s s s
N

a x x y y z z

i
y e − + − + −

=

= ∑  

where N is the number of particles that falls within the scope of the particular 
sensor, 0a <  is a constant specific to the sensor, , ,s s sx y z  are the coordinate 
of a given sensor, and , ,x y z  represent the coordinates of a contaminant 
particle 324 initial points are generated from a grid spaced with 2.0 m in 

, ,x y z  directions. Table 2 shows the convergence of the solution. It should be 
noted that the origin of the contaminant is covered by the initial points 
generated. 

 
Table 2 

Convergence of Estimated (x0; y0; z0) 

Step Time (sec) x0 y0 z0
1 0.8440 4.000 6.000 14.000
2 1.6410 4.000 6.000 14.000

 
A. Modified Importance Weights Formula 

In order to test the stability and reliability of the importance weight 
formula, let us introduce the contaminant at (3.80, 6.20, 13.80). Let us use the 
same initial points as before and we expect the solution to converge to the 
closest point (4,6,14) on the grid. Instead, Table 3 shows that solution converge 
to the point (4,8,14).  

 
Table 3 

Without Modified Importance Weights 

Step Time (sec) x0 y0 z0
1 0.8280 4.000 7.9505 14.000
2 1.6100 4.000 8.0000 14.000
3 2.3910 4.000 8.0000 14.000

 
It was noted that accuracy of the solution can be improved by 

multiplying each importance weight by a factor determined by considering all 
the observations at sensors. 
Let 

N

j=1

output at sensor for initial po int
output at sensor for initial point 

ij
i ja

i j
=
∑
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11

6
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ii
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=
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where N is the number of initial points. Now importance weights are multiplied 
by v and normalized to obtain modified importance weights. 
 

1

( ) ( )( )
( ) ( )N

i

v i q iq i
v i q i

=

=
∑

 

 
Table 4 shows the solution after modifying the importance weights formula and 
it converges to the anticipated point. 
 

Table 4 
With Modified Importance Weights 

Step Time (sec) x0 y0 z0
1 0.844 4.000 7.0526 14.000
2 1.625 4.000 6.0062 14.000
3 2.406 4.000 6.0000 14.000

 
B. Expanding initial points in multi-stages 

 
Contaminants are introduced at (8.32, 7.40, 6.76) and initial points 

(14,079 points) are generated at the nodes of a grid with intervals of 1.0, 0.5, 0.5 
meters in x, y and z direction respectively. Table 5 indicates less accurate 
estimate with high computational time when large number of initial points are 
used. 

Table 5 
Using a Dense set of Initial Points in a Single Stage 

Step Time  (sec) x0 y0 z0
1 122.8900 8.0566 7.4800 6.8041
2 245.0930 8.0018 7.5045 6.8015

 

 
Let us introduce initial points at different resolutions in multi-stages. 

First initial points are generated to cover the whole space and PF is executed for 
a sufficient number of iterations to obtain a subset of initial points. These initial 
points are further expanded into their surrounding in order to obtain improved 
accuracy. In the first stage, 729 points generated from a grid with (in x, y, z 
order) 2, 1, 2 meter intervals are used. Four steps are calculated using particle 
filter algorithm and the solution is expanded to its surrounding creating 343 
points in the second stage. The solution reached in second stage is expanded as 
before to obtain 637 points after five steps of calculation. Table 6 shows that the 
solution reaches an accurate estimate while dramatically reducing the 
computational time (clearly more than ten times faster compared to single stage 
result). 
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Table 6 
Solution in Multi-stages 

Stage 1 with  729 points
Step Time(sec) x0 y0 z0

1 1.8750 7.9314 7.8573 6.0027
2 3.6720 8.0027 8.0000 6.0000
3 5.4690 8.0000 8.0000 6.0000
4 7.2820 8.0000 8.0000 6.0000

Stage 2 with 343 points
5 8.1720 8.2895 7.6082 6.7968
6 9.0000 8.3450 7.5570 6.7295
7 9.8280 8.3372 7.5440 6.5938
8 10.6410 8.3971 7.5037 6.7000
9 11.4530 8.4985 7.5007 6.5426

Stage 3 with 637 points
10 13.1250 8.2807 7.5831 6.8125
11 14.7030 8.2870 7.5185 6.7476
12 16.2500 8.2512 7.4998 6.7500
13 17.7970 8.2504 7.4923 6.7500
14 19.3440 8.2504 7.4962 6.7500
15 20.8910 8.2500 7.4988 6.7500
16 22.4530 8.2500 7.4994 6.7500
17 24.0160 8.2500 7.4998 6.7500

 
C. Use of observations to generate initial states 

Limiting the number of initial points in particle filters can dramatically 
improve the computational time. One way of doing this is to generate initial 
points that falls into the scope of sensors that reports a concentration level. This 
idea can be further extended by considering the intersection of the scopes of 
sensors whose output records contaminant particles at time 0t = . Contaminants 
are introduced at (8.32, 7.40, 6.76). Consider the scopes of two sensors and 
generate initial points with intervals 0.25, 0.125, 0.25 in x, y and z direction 
respectively. For this example we generate 1086 points to compute the solution 
(Table 7). 

Table 7 
Using Observations of Two Sensors 

Step Time (sec) x0 y0 z0
1 6.6560 8.2000 7.4281 6.8105
2 9.4530 8.2917 7.5061 6.7618
3 12.2190 8.2493 7.4818 6.7500
4 15.0160 8.2500 7.4859 6.7500
5 17.7970 8.2500 7.4963 6.7500
6 20.5630 8.2500 7.4988 6.7500
7 23.3280 8.2500 7.4998 6.7500
8 26.0940 8.2500 7.4998 6.7500
9 28.8750 8.2500 7.5000 6.7500
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Conclusions 

Use of Particle filters in estimating the origin of contaminants is 
explored and we can anticipate sequential Monte Carlo methods would result in 
better convergence for similar types of problems. This paper considers a simple 
form of particle filter algorithm along with modifications to importance weights 
formula. In addition, initial points were introduced at multi stages and generated 
based on sensor observations. This results in an increased performance with a 
dramatic reduction in computational cost. 
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