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ABSTRACT 

 
The heavy-tailed distribution provides a much better fit to financial 

data than the normal distribution. Modeling heavy-tailed distributions is done by 
resorting to stable distribution. The parameters of stock-market are estimated by 
the MLE. To check the superiority of stable over normal distribution, we used 
both graphical methods as well as test statistics for normal and for stable 
distribution.  

 
INTRODUCTION 

 
Over decades, development and modeling of financial concepts was 

based on the assumption that the financial data was distributed normally (i.e. the 
data was supposed to possess Gaussian distribution). That was the case with 
option pricing, risk analysis, etc.  But the huge losses incurred (for example, 
cases of Barings or Daiwa and huge stock market downtrends) made the analysts 
to go back and locate the roots of the mis-analysis.  It was Mandelbrot (1963), 
who found that the data was highly skewed and also had huge tails and 
recognized that these were not the characteristics of Gaussian distribution. He 
finally concluded that the financial data have a non-Gaussian distribution with 
huge tails. This distribution with huge tails was named as “Heavy-tailed 
distribution”. They are also known as Power-law distribution (since they have 
power-law decay), fat-tailed, long-tailed distribution. These distributions are 
hyperbolic in nature and are highly skewed. An important thing to remember is 
the skewness is only a possibility. Even the distributions which are not skewed 
but have huge tails are said be heavy-tailed distributions. Examples of heavy-
tailed distributions are the Pareto, Levy, log-gamma distributions. The most 
interesting feature and the feature that made these distributions popular is that 
these distributions can accommodate extreme values (i.e. extremely large values 
or extremely small values). In these distributions, the data will have power-law 
decay instead of the usual exponential decay, which occurs in Gaussian 
distributions. The existence of heavy-tailed distributions is not limited to 
finance. Even most of the data in economics, geology, climatology, signal 
processing, insurance, environmetrics do have heavy-tailed distributions. See 
Rachev (2003), Adler et.al., (1997), Embrechts et.al., (1953), Coles (2001), 
Barry (1983), Zolotarev (1986), Press (1972), and among others. The heavy-
tailed distributions are defined as  
           ܲሺܺ   ݔ ݏܽ   ఈିݔ݉~ሻݔ ՜ ∞, ܽ݊݀ 0 ൏ ߙ ൏ 2,              (1.1) 
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               Modeling Heavy-tailed distribution 
Heavy-tailed distributions can be modeled by any of the following distributions 
such as Stable, Student’s t, hyperbolic, Normal inverse Gaussian or truncated 
stable distributions.  In this paper, stable distributions are considered to model 
the given data from a heavy-tailed distribution. The main reason for the 
selection of stable distribution is they are the only distributions supported by the 
generalized central limit theorem  which are leptokurtic (a distribution is said to 
be leptokurtic if its kurtosis is less than 3). Most of the financial data (in general 
case empirical data) discussed above follow heavy-tailed distribution and in 
most cases are asymmetric, and so cannot be modeled by Gaussian distributions. 
Therefore, stable distributions are the only alternative. 
 
Stable Distribution 
Consider the variables X1, X2, X3..., Xn  that are independent, identically 
distributed variables. If   ଵܺ  ܺଶ ڮ ܺ

ௗ
՜ ܽܺ  ܾ, where n is a positive 

integer, an > 0, and bn is a constant, then X1, X2, X3... Xn are said to have Stable 
distribution. In the above equation, an usually takes the form of ݊ଵ ఈ⁄ . Detailed 
discussion about  is given below. If n  independent random variables have 
stable distribution and same index α, are added, the resulting distribution is 
again a stable distribution with index α. However, this condition is not satisfied 
when the variables have different index α, i.e. they exhibit invariance property 
of ߙ.  Since there is no closed form expression for the densities of stable 
distributions, it is described by a characteristic function of ܵఈ,ఉሺߜ, ܿሻ, which is 
the Inverse Fourier Transform of the PDF which is given as follows: 

 ݁௧௫∞
ି∞ ሻݔሺܪ݀ ൌ ሼ

exp ሾെܿఈ|ݐ|ఈ ቀ1 െ ሻݐሺ݊݃݅ݏߚ݅ tan ቀగఈ
ଶ
ቁቁ  ߙ   ሿݐߜ݅ ് 1

exp ቂെܿ|ݐ| ቀ1 െ ߚ݅ ቀଶ
గ
ቁ ሻݐሺ݊݃݅ݏ ቁ|ݐ|݈݊  ቃݐߜ݅ ߙ      ൌ 1                       

(1.2)      

 
where H is the Distribution Function, and α  where 20 ≤< α   is the 
Characteristic Exponent or index of stable distribution.   In literature there are 
different notations for the four parameters of a stable distribution i.e. α, β, ߜ, and 
c whose details are presented in the table below. 
 
Table 1: Stable distribution parameters 
 
 

parameter           Name Possible values 

         α Index of Stability, Tail index, Tail 
Exponent 

   0 ൏ ߙ  2 

            β Skewness Parameter   11 ≤≤− β  
Location    R∈δ ߜ        
        c Scale     c > 0 

 

α
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α  determines the type of distribution and the length of the tails. The length of 
the tails increases as the value of α decrease from 2 to 0.  If α =2, the 
distribution is normal, and if α =1, the distribution is Cauchy. If α  is in the 
range of 0 to 2, then the distribution is a Stable distribution. Higher order 
moments such as variance and others exist only when α = 2.   If, for a 
distribution, α  is less than 2, then the distribution is leptokurtic and has fat 
tails, and the variance is infinite. This seems to be inappropriate. But in the 
distributions with infinite variations, one of the summands contributes the most 
to the sum of variables. This can be perfectly applied to a case, when there is a 
probability for large deviations in a single variable, while this type of probability 
can be ruled out, or is minimum in the case of remaining variables. This is a 
perfect fit for situations that occur frequently in Stock markets, financial 
institutions, earthquakes, etc. As discussed, the existence of mean and variance 
depends on α . When α  equals 2 both mean and variance exist. But when α  
is in the range of 1 and 2, the mean exists while variance becomes infinite. Even 
in such cases, the variance of the distribution can be measured. Since the mean 
exists, the absolute mean deviation can be calculated and can be used as a 
measure of variance of the distribution. When α  < 1, both mean and variance 
are infinite. In some cases, the tail index exponent α  helps in finding the 
estimates of the remaining variables. According to Mandelbrot (1963), “when α 
is greater than 1, the location parameter ߜ is equal to the mean of the 
distribution”. β  determines the skewness of the distribution. If the value of β 
ranges from -1 to 0, then the distribution is left-skewed. If its value is equal to 
zero, then the distribution is symmetric. Instead if the value of β is greater than 
zero but less than one, then the distribution is right-skewed.  When α starts 
approaching 2, the distribution starts becoming Gaussian, irrespective of the 
value of β. Note that β is zero in case of Gaussian distribution or symmetric 
stable distribution. The parameter ߜ as described above is location parameter, 
while c is the scale parameter.  
 
Behavior of Stable distributions under different parameter conditions 
              Case 1: Effect of α  on Symmetric stable distributions: 
Shown below in the figure 7 is the picture to show dependence of the 
distribution on α when the distribution is symmetric.  In this distribution, α 
ranges from 1 to 2, β = 0, c=1 and 0= ߜ. It can be seen that when α=2, the curve 
converges and exhibits Gaussian behavior. But when it starts decreasing towards 
1, the time taken to converge increases. In figure 2.7 for α = 1.0, 1.2, 1.4, 1.6, 
1.8. 2.0 the color of the graph is blue, red, pink, grey, green, and orange, 
respectively.   
 

Figure 7: Symmetric stable distribution for 1.0 ≤ α ≤ 2.0, β=0 
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          Case 2: (i) Effect of α  on Asymmetric stable distributions (right-skewed 
distribution).  
(ii) Effect of α  on Asymmetric stable distributions (left-skewed distribution).  
See Ravi (2005). 
Case 3: Effect of β on stable distributions: Shown below in figure 8 is the effect 
of β on the stable distribution. When β < 0, (in this case, β=-1, -0.5 as shown by 
black and green curves) the distribution is left-skewed. When β = 0, (in this case 
as shown by the pink curve) the stable distribution is symmetric. It reaches its 
maximum value at zero.  And when β > 0, (in this case, β=0.5, 1 as shown by 
red and blue curves) the stable distribution is right-skewed. In figure 8 describes 
β = -1.0, -0.5, 0, 0.5, 1.0 for color of the graph is black, green, pink, red and 
blue, respectively.  See Ravi (2005) for alpha = 1.5 and 2.0. 

 
Figure 8: Stable distributions for α=1.0 and -1 ≤ β ≤ 1 
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Testing For Normality 

 
In this paper, the data are collected from the closing prices of Dow-Jones 
Industrial average from Jan 1 1984 to Dec 31, 1997. The reason for the selected 
large span of time is that there were a lot of studies which were based on the 
assumption that when data comes from the stock market and is large, it exhibits 
properties of normal distribution. The main aim of this paper is to show that for 
such data from stock-market, heavy-tailed distributions are better fit when 
compared to that of normal distribution. Several graphical tests such as box-plot, 
probability plot and also tests such as the Shapiro-Wilk test, Kolmogorov-
Smirnov test, Anderson-darling test and the Cramer-Von test can be carried out 
to prove that the given data is normally distributed or not.   
(1) Box plot: In figure 9, the box-plot for the data is shown. There are 
outliers on both sides of the rectangle. The length of the lines attached to 
rectangle is long when compared to the length of the rectangle indicating that 
the distribution has heavier tails. Therefore when this box plot is compared with 
the prototype box-plot, it can be concluded that the data is not from a normal 
distribution. 

 
Figure 9: Box-plot for the stock-market data 

 



 

J

(
s
r
s
th
I
o
th
th
p
 
  

(
n
d
th
 

Journal of Math

2) Norma
stock-market d
remains on the
starts below the
he middle of t
mmediately, it

of probability p
he probability 
he given stock

probability plot

                 Fig

3) Histog
normal curve o
distribution. Th
he box plot and

hematical Scie

al Probability 
data is shown 
e line, the foll
e actual line. T
the plot, the pl
t crosses the lin
plots for the gi
plot from nor

k-market does 
t behavior. 

gure 10  Norm

gram: From th
on the histogram
his conclusion 
d normal proba

ences & Mathe

 
plot: The norm
in figure 10. A
lowing import
Then it crosses
lot again cross
ne and ends ab
iven stock-mar
rmal distributio
not have norm

mal probability

he histogram
m, it can be co
is different wh
ability plot.  

matics Educat

mal probability
Although, for 
tant points mu
s the line and s
ses the line and
bove the norma
rket data does 
on. Therefore, 
mal distributio

y plot for the s

(see figure 1
oncluded that t
hen compared t

ion, Vol. 5, No

y plot for the 
90% of time, 

ust be noted. T
stays above the
d stays below 
al line. So the 
not match wit
we will concl

on based on its

stock-market d

1), and fitting
the data is from
to the conclusio

 

o.1 

 

selected 
the plot 

The plot 
e line. In 
the line. 
behavior 

th that of 
lude that 
s normal 

data       

g of the 
m normal 
ons from 



 

J

T
s
C
 

 

 

K

 
T
C
s
0
s
la
A
c
a
 

 
A
i

Journal of Math

To confirm the
statistical tests
Cramer-Von M

Test 

Kolmogorov-S

Cramer-Von 

Anderson-D

Table 2 shows 
Cramer-Von M
stock-market da
0.05. Therefore
stock-market d
arger than 0.0

Although histo
conclude that i
are not from a n

M

As discussed e
s collected fro

hematical Scie

e distribution o
s such as th

Mises test are pe

Figure 11 H

Table 2:Tes

Smirnov D

Mises W-

arling A-

the tests, their
Mises, and the A

ata. For the no
e it can be co

data is not norm
05 meaning th
ogram shows t
it is not norma
normal distribu

Modeling Data

arlier, the data
om stock-mark

ences & Mathe

of the data, wh
he Kolmogoro
erformed.  

 
Histogram for 

 

st statistics for
 

Normal

D=0.10998; P <

Sq=10.4064; P

-Sq=60.5085; P

r statistics and 
Anderson-Darl

ormal test, all p
oncluded based
mally distribut
hat the stock-
that data is b

ally distributed
ution. 

a From Heavy

a of closing pri
ket for the per

matics Educat

hether it is nor
ov-Smirnov, A

stock-market

r testing norm

< 0.01 

P < 0.005 W

P<0.005 A

p-values. The 
ling tests are p

p-values of all t
d on results of
ted. For Stable
-market is fro
ell shaped, sin

d, it is finally c

y-Tailed Distr

ices of Dow-Jo
riod Jan 1 198

ion, Vol. 5, No

rmal or not, a 
Anderson-Darl

t data 

mality 

Stable 

D=.0544;  P=0

W-sq=0.1476; P

-sq=0.8939; P=

Kolmogorov-S
performed on t
these tests are 
f all the tests, 
e test, all p-va

om stable dist
nce all the oth
concluded that 

ibutions 

ones industrial
84 – Dec 31, 

 

o.1 

series of 
ling, the 

 

0.25 

=0.08 

=0.06 

Smirnov, 
the given 
less than 
that the 

alues are 
tribution. 
her tests 
the data 

l average 
1997. In 



 
 

Journal of Mathematical Sciences & Mathematics Education, Vol. 5, No.1 

some of his early works, Moore (1991) was able to prove that weekly changes in 
stock prices from New York Stock Exchange (NYSE) had normal distribution. 
But he considerably ignored the fact that the distribution had longer tails than 
compared to normal distribution. In the words of Teichmoeller (1971), “Stock 
prices do not appear to exhibit the properties which would indicate that stock 
price changes are represented by a simple mixture of normal distributions”. To 
support these discussions, series of tests are carried out on the collected stock-
market data. Although in section of box-plot, it has been proved that the data is 
not from the normal distribution, the fact that the data possess heavy-tailed 
distribution is to be established. This is done by carrying out the box-plot test 
and probability plot test. Again using box-plot of the stock-market data (see 
figure 9), we observe that the outliers are on both sides of the rectangle, 
therefore the data posses very heavy tails. Since the length of whiskers seems to 
be proportionate to the length of the rectangle, so it can be concluded that the 
data is almost symmetric possessing heavy-tails. Based on the probability plot 
shown in figure 10, the normal probability plot test establishes the fact that the 
given stock-market data is from symmetric heavy-tailed distribution.  
Logarithms of the collected stock prices are calculated. The main reason for 
calculating logarithms of the stock prices is for a given price level of a stock, it 
is observed that the variability of everyday price changes is an increasing 
function. Taking logarithm would eliminate the price-level effect. And one more 
point to be noted is, the estimation procedures are never employed on raw data 
available from the market. Instead the returns of daily stock prices are calculated 
and then estimation procedures are employed on these returns. These returns are 
calculated by taking the logarithm of the ratio of previous closing price and the 
present closing price. The values of the parameters of stable distribution are 
estimated based on these stock price return values by the method of Maximum 
likelihood estimation (DuMouchel, 1973). Although the maximum likelihood 
estimation method is slower (although not the slowest) when compared to other 
algorithms or methods currently in use, it almost yields the accurate estimators. 
Using the maximum likelihood, we can either perform direct integration or use 
FFT (Fast Fourier Transform) method which is equally good. The most 
commonly used is direct integration due to certain limitations on FFT method. 
Here, data are simulated using direct integration. The simulation results are 
presented below in table 3. The Stable distribution is then modeled using these 
parameter values and the corresponding curve is plotted.  

 
Table 3: Estimated values of Stable distribution parameters for given 

Stock-market data 
Parameter Estimated value 

Tail Exponent(α) 1.5153 
Skewness Parameter (β) 0.1609 

Scale Parameter (c) 0.0021 
Location Parameter(δ) -0.0002 
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Figure 13: Comparing Fitted Normal and Stable Distribution 
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