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ABSTRACT

The heavy-tailed distribution provides a much better fit to financial
data than the normal distribution. Modeling heavy-tailed distributions is done by
resorting to stable distribution. The parameters of stock-market are estimated by
the MLE. To check the superiority of stable over normal distribution, we used
both graphical methods as well as test statistics for normal and for stable
distribution.

INTRODUCTION

Over decades, development and modeling of financial concepts was
based on the assumption that the financial data was distributed normally (i.e. the
data was supposed to possess Gaussian distribution). That was the case with
option pricing, risk analysis, etc. But the huge losses incurred (for example,
cases of Barings or Daiwa and huge stock market downtrends) made the analysts
to go back and locate the roots of the mis-analysis. It was Mandelbrot (1963),
who found that the data was highly skewed and also had huge tails and
recognized that these were not the characteristics of Gaussian distribution. He
finally concluded that the financial data have a non-Gaussian distribution with
huge tails. This distribution with huge tails was named as “Heavy-tailed
distribution”. They are also known as Power-law distribution (since they have
power-law decay), fat-tailed, long-tailed distribution. These distributions are
hyperbolic in nature and are highly skewed. An important thing to remember is
the skewness is only a possibility. Even the distributions which are not skewed
but have huge tails are said be heavy-tailed distributions. Examples of heavy-
tailed distributions are the Pareto, Levy, log-gamma distributions. The most
interesting feature and the feature that made these distributions popular is that
these distributions can accommodate extreme values (i.e. extremely large values
or extremely small values). In these distributions, the data will have power-law
decay instead of the usual exponential decay, which occurs in Gaussian
distributions. The existence of heavy-tailed distributions is not limited to
finance. Even most of the data in economics, geology, climatology, signal
processing, insurance, environmetrics do have heavy-tailed distributions. See
Rachev (2003), Adler et.al., (1997), Embrechts et.al., (1953), Coles (2001),
Barry (1983), Zolotarev (1986), Press (1972), and among others. The heavy-
tailed distributions are defined as

P(X >x)~mx~% asx »ow,and 0 < a < 2, (1.1)
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where X is a random variable, & is a shape parameter, and m is a location
parameter.

Heavy-Tailed Distribution
Identifying Heavy-tailed distribution

Over the course of time, a large number of methods was developed to
identify whether a given data set has a heavy-tailed distribution or not. This is
very important since this conclusion makes the data to be considered either
Gaussian or Non-Gaussian. This classification can be done either
mathematically or graphically. If the distribution of a given data is known and if
it can be expressed in the form of equation (1.1), then the data is said to have
heavy-tailed distributions. But a problem arises when the distribution of a given
data is not known. Then the identification can be done graphically. There exist a
lot of graphical methods to carry out the identification process. Some of them
are normal probability plots, box plots, and CCDF (Complementary Cumulative
Distribution Function) test.

Graphical methods to identify heavy-tailed distribution

(a)Plot the given data and check if it exhibits hyperbolic nature. If yes, then the
data have heavy-tailed distribution. See figure 1 below.

Figure 1: Hyperbolic distribution

(b) Normal Probability plots: Normal probability plot also known as pp-plot is
one of the graphical means for determining normality of the given data. Normal
probability plots provide the information about the outliers in a given data and
skewness of the data graphically. In the normal probability plots, the values of
the given dependent variable (arranged in ascending order) are plotted against
the percentiles of a normal distribution. If the graph is linear then the data are
said to be normal. Given below are different cases of a probability plot. The
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Figure 2 shows the probability plot for left-skewed data. The plot starts below
the line, crosses the line and then ends below the line. Figure 3 shows the
probability plot for right-skewed data. It starts above the line, crosses the line
and then again ends above the line. Figure 4 shows the probability plot for data
having symmetric heavy-tailed distributions. The plot starts below the line,
crosses the line in the lower end stays above the line. When it reaches to about
the middle of the line, the plot crosses the line and stays below. Finally it ends
above the line. Note that if the data possess heavy-tailed distribution and is not
symmetric, the basic outline of the plot remains the same except that the plot do
not cross the line exactly in the middle, similarly figure 5 show probability plot
of symmetric light-tailed data.

Figure 2: Normal probability plot for Left-Skewed data

Figure 3: Normal probability plot for Right-Skewed Data

Figure 4: Normal probability plot Symmetric Heavy-tailed Data
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Figure 5 shows the normal probability plot for data having symmetric light-
tailed distribution. The plot starts above the line, crosses the line in the lower
end, stays below the line until it reaches the mid point of the line. When it
reaches to about the middle of the line, the plot crosses the line and stays above.
Finally it ends below the line.

(c) Box plot: Box-plot is a graphical way to represent data in terms of quartiles.
Along with these, it also shows the lower limit, upper limit and any possible
outliers in the given data. Any outliers in the given data are shown as stars, and
are located away from the rectangular region. If the box plot for the given data
has outliers on both sides and has tails longer than the length of the box, then the
data is said to have heavy-tailed distribution. Example of such box plot is shown
below.

Figure 6: Box plot for heavy-tailed distribution

L T

B Sl

Journal of Mathematical Sciences & Mathematics Education, Vol. 5, No.1



Modeling Heavy-tailed distribution

Heavy-tailed distributions can be modeled by any of the following distributions
such as Stable, Student’s t, hyperbolic, Normal inverse Gaussian or truncated
stable distributions. In this paper, stable distributions are considered to model
the given data from a heavy-tailed distribution. The main reason for the
selection of stable distribution is they are the only distributions supported by the
generalized central limit theorem which are leptokurtic (a distribution is said to
be leptokurtic if its kurtosis is less than 3). Most of the financial data (in general
case empirical data) discussed above follow heavy-tailed distribution and in
most cases are asymmetric, and so cannot be modeled by Gaussian distributions.
Therefore, stable distributions are the only alternative.

Stable Distribution
Consider the variables X;, X,, Xs..., X, that are independent, identically

distributed variables. If X; + X, + -+ X, E) a,X + b,, where n is a positive
integer, a, > 0, and b, is a constant, then X;, X,, X;... X;, are said to have Stable
distribution. In the above equation, a, usually takes the form of n1/2 Detailed
discussion about & is given below. If » independent random variables have
stable distribution and same index a, are added, the resulting distribution is
again a stable distribution with index a. However, this condition is not satisfied
when the variables have different index a, i.e. they exhibit invariance property
of a. Since there is no closed form expression for the densities of stable
distributions, it is described by a characteristic function of Sap (6, ¢), which is
the Inverse Fourier Transform of the PDF which is given as follows:

exp [—c¥|t|* (1 — ifsign(t) tan (n?a)) +idt] a#1

J2 et dH(x) = {
exp [—cltl (1 —ip (%) sign(t) lnltl) + i6t] a=1

(1.2)

where H is the Distribution Function, and & where 0 < @ <2 is the

Characteristic Exponent or index of stable distribution. In literature there are
different notations for the four parameters of a stable distribution i.e. a, B, §, and
¢ whose details are presented in the table below.

Table 1: Stable distribution parameters

parameter Name Possible values
o Index of Stability, Tail index, Tail O<a<?2
Exponent
B Skewness Parameter —-1< ,B <1
1) Location SeR
c Scale c>0
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O determines the type of distribution and the length of the tails. The length of
the tails increases as the value of ¢ decrease from 2 to 0. If & =2, the
distribution is normal, and if & =1, the distribution is Cauchy. If & is in the
range of 0 to 2, then the distribution is a Stable distribution. Higher order
moments such as variance and others exist only when o= 2. If, for a
distribution, & is less than 2, then the distribution is leptokurtic and has fat
tails, and the variance is infinite. This seems to be inappropriate. But in the
distributions with infinite variations, one of the summands contributes the most
to the sum of variables. This can be perfectly applied to a case, when there is a
probability for large deviations in a single variable, while this type of probability
can be ruled out, or is minimum in the case of remaining variables. This is a
perfect fit for situations that occur frequently in Stock markets, financial
institutions, earthquakes, etc. As discussed, the existence of mean and variance
depends on @ . When & equals 2 both mean and variance exist. But when &
is in the range of 1 and 2, the mean exists while variance becomes infinite. Even
in such cases, the variance of the distribution can be measured. Since the mean
exists, the absolute mean deviation can be calculated and can be used as a
measure of variance of the distribution. When & < 1, both mean and variance
are infinite. In some cases, the tail index exponent & helps in finding the
estimates of the remaining variables. According to Mandelbrot (1963), “when o
is greater than 1, the location parameter § is equal to the mean of the
distribution”. B determines the skewness of the distribution. If the value of B
ranges from -1 to 0, then the distribution is left-skewed. If its value is equal to
zero, then the distribution is symmetric. Instead if the value of B is greater than
zero but less than one, then the distribution is right-skewed. When a starts
approaching 2, the distribution starts becoming Gaussian, irrespective of the
value of B. Note that B is zero in case of Gaussian distribution or symmetric
stable distribution. The parameter § as described above is location parameter,
while ¢ is the scale parameter.

Behavior of Stable distributions under different parameter conditions
Case 1: Effect of & on Symmetric stable distributions:

Shown below in the figure 7 is the picture to show dependence of the
distribution on o when the distribution is symmetric. In this distribution, o
ranges from 1 to 2, B =0, c=1 and § =0. It can be seen that when =2, the curve
converges and exhibits Gaussian behavior. But when it starts decreasing towards
1, the time taken to converge increases. In figure 2.7 for a = 1.0, 1.2, 1.4, 1.6,
1.8. 2.0 the color of the graph is blue, red, pink, grey, green, and orange,
respectively.

Figure 7: Symmetric stable distribution for 1.0 < a < 2.0, =0
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Case 2: (i) Effect of & on Asymmetric stable distributions (right-skewed
distribution).
(i1) Effect of @ on Asymmetric stable distributions (left-skewed distribution).
See Ravi (2005).
Case 3: Effect of B on stable distributions: Shown below in figure 8 is the effect
of B on the stable distribution. When f§ < 0, (in this case, f=-1, -0.5 as shown by
black and green curves) the distribution is left-skewed. When B = 0, (in this case
as shown by the pink curve) the stable distribution is symmetric. It reaches its
maximum value at zero. And when B > 0, (in this case, p=0.5, 1 as shown by
red and blue curves) the stable distribution is right-skewed. In figure 8 describes
B =-1.0, -0.5, 0, 0.5, 1.0 for color of the graph is black, green, pink, red and
blue, respectively. See Ravi (2005) for alpha = 1.5 and 2.0.

Figure 8: Stable distributions for 0=1.0 and -1<p <1
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log(pdf (x)}

Testing For Normality

In this paper, the data are collected from the closing prices of Dow-Jones
Industrial average from Jan 1 1984 to Dec 31, 1997. The reason for the selected
large span of time is that there were a lot of studies which were based on the
assumption that when data comes from the stock market and is large, it exhibits
properties of normal distribution. The main aim of this paper is to show that for
such data from stock-market, heavy-tailed distributions are better fit when
compared to that of normal distribution. Several graphical tests such as box-plot,
probability plot and also tests such as the Shapiro-Wilk test, Kolmogorov-
Smirnov test, Anderson-darling test and the Cramer-Von test can be carried out
to prove that the given data is normally distributed or not.

(1) Box plot: In figure 9, the box-plot for the data is shown. There are
outliers on both sides of the rectangle. The length of the lines attached to
rectangle is long when compared to the length of the rectangle indicating that
the distribution has heavier tails. Therefore when this box plot is compared with
the prototype box-plot, it can be concluded that the data is not from a normal
distribution.

Figure 9: Box-plot for the stock-market data
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(2) Normal Probability plot: The normal probability plot for the selected
stock-market data is shown in figure 10. Although, for 90% of time, the plot
remains on the line, the following important points must be noted. The plot
starts below the actual line. Then it crosses the line and stays above the line. In
the middle of the plot, the plot again crosses the line and stays below the line.
Immediately, it crosses the line and ends above the normal line. So the behavior
of probability plots for the given stock-market data does not match with that of
the probability plot from normal distribution. Therefore, we will conclude that
the given stock-market does not have normal distribution based on its normal
probability plot behavior.

Figure 10 Normal probability plot for the stock-market data

o125

©.100

o.07s

L o ®
] it
_,/;aﬁlﬂ'ﬂm'—i
3) Histogram: From the histogram (see figure 11), and fitting of the

normal curve on the histogram, it can be concluded that the data is from normal
distribution. This conclusion is different when compared to the conclusions from
the box plot and normal probability plot.
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To confirm the distribution of the data, whether it is normal or not, a series of
statistical tests such as the Kolmogorov-Smirnov, Anderson-Darling, the
Cramer-Von Mises test are performed.

Figure 11 Histogram for stock-market data
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Table 2:Test statistics for testing normality

Test Normal Stable

Kolmogorov-Smirnov D=0.10998; P < 0.01 D=.0544; P=0.25

Cramer-Von Mises W-Sq=10.4064; P <0.005 | W-sq=0.1476; P=0.08

Anderson-Darling A-Sq=60.5085; P<0.005 A-3q=0.8939; P=0.06

Table 2 shows the tests, their statistics and p-values. The Kolmogorov-Smirnov,
Cramer-Von Mises, and the Anderson-Darling tests are performed on the given
stock-market data. For the normal test, all p-values of all these tests are less than
0.05. Therefore it can be concluded based on results of all the tests, that the
stock-market data is not normally distributed. For Stable test, all p-values are
larger than 0.05 meaning that the stock-market is from stable distribution.
Although histogram shows that data is bell shaped, since all the other tests
conclude that it is not normally distributed, it is finally concluded that the data
are not from a normal distribution.

Modeling Data From Heavy-Tailed Distributions

As discussed earlier, the data of closing prices of Dow-Jones industrial average
is collected from stock-market for the period Jan 1 1984 — Dec 31, 1997. In
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some of his early works, Moore (1991) was able to prove that weekly changes in
stock prices from New York Stock Exchange (NYSE) had normal distribution.
But he considerably ignored the fact that the distribution had longer tails than
compared to normal distribution. In the words of Teichmoeller (1971), “Stock
prices do not appear to exhibit the properties which would indicate that stock
price changes are represented by a simple mixture of normal distributions”. To
support these discussions, series of tests are carried out on the collected stock-
market data. Although in section of box-plot, it has been proved that the data is
not from the normal distribution, the fact that the data possess heavy-tailed
distribution is to be established. This is done by carrying out the box-plot test
and probability plot test. Again using box-plot of the stock-market data (see
figure 9), we observe that the outliers are on both sides of the rectangle,
therefore the data posses very heavy tails. Since the length of whiskers seems to
be proportionate to the length of the rectangle, so it can be concluded that the
data is almost symmetric possessing heavy-tails. Based on the probability plot
shown in figure 10, the normal probability plot test establishes the fact that the
given stock-market data is from symmetric heavy-tailed distribution.

Logarithms of the collected stock prices are calculated. The main reason for
calculating logarithms of the stock prices is for a given price level of a stock, it
is observed that the variability of everyday price changes is an increasing
function. Taking logarithm would eliminate the price-level effect. And one more
point to be noted is, the estimation procedures are never employed on raw data
available from the market. Instead the returns of daily stock prices are calculated
and then estimation procedures are employed on these returns. These returns are
calculated by taking the logarithm of the ratio of previous closing price and the
present closing price. The values of the parameters of stable distribution are
estimated based on these stock price return values by the method of Maximum
likelihood estimation (DuMouchel, 1973). Although the maximum likelihood
estimation method is slower (although not the slowest) when compared to other
algorithms or methods currently in use, it almost yields the accurate estimators.
Using the maximum likelihood, we can either perform direct integration or use
FFT (Fast Fourier Transform) method which is equally good. The most
commonly used is direct integration due to certain limitations on FFT method.
Here, data are simulated using direct integration. The simulation results are
presented below in table 3. The Stable distribution is then modeled using these
parameter values and the corresponding curve is plotted.

Table 3: Estimated values of Stable distribution parameters for given
Stock-market data

Parameter Estimated value
Tail Exponent(a) 1.5153
Skewness Parameter () 0.1609
Scale Parameter (c) 0.0021
Location Parameter(5) -0.0002
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The parameters briefly explain the behavior of the stable distribution curve for
the collected stock-market data. The tail exponent(a) value being 1.5, indicates
that although tails exist, they are not that heavy since its value is close to 2
(when a equal to 2, stable distribution becomes Gaussian). It also explains that
the first moment i.e. the mean exists for this data. The skewness parameter being
0.16 indicates that the data is skewed right. Also the location parameter indicates
a slight deviation from the center. The stable distribution is then fitted to the
data. Figure 12 depicts this. Although, it resembles the normal curve, it is not.
This can be noted by observing the tails of the curve. They seem to be
converging but really don’t. Thus, it preserves the property of the non-
convergence of tails in heavy-tailed distributions. The reason it resembles
normal curve is due to its tail exponent value which is equal to 1.5 (see stable
distribution section regarding the behavior of stable distributions). In figure 13,
this fitted stable distribution curve is superimposed on the normal curve so as to
have a better understanding of the difference between the two fitted curves.

Conclusions

The main aim of this paper is to show that the stable distributions provide a
better fit to stock-market data when compared to normal distribution. In section
4, the Stable distribution is fitted for the given stock-market data. This can be
done either graphically or by carrying out series of tests. Proceeding graphically,
the stable distribution fit and the normal curve for the stock-market data are
super-imposed on each other in figure 13. When compared, stable distribution
provides better fit to the histogram than normal distribution. This can be
explained either in terms of height or in most of the cases where it touches the
tips of the bars of the histogram. Therefore graphically stable distributions are
proved to provide much better fit when compared to normal distributions. But to
prove it technically a series of tests are performed. Hence, by both graphical
means and performing tests, it showed that a stable distribution provide much
better fit than when compared to the fit provided by a normal distribution.

Figure 12 Stable distribution fitted to histogram of stock-market data

Figure 4.2 Comparing Fitted normal and stable distributions
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Figure 13: Comparing Fitted Normal and Stable Distribution
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