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Abstract 
 
 Fixed points and transient points are defined in the group Sym(S) of 
permutations on a nonempty set S. Disjoint and semidisjoint permutations are 
then defined in terms of transient points. It is shown that the collection of 
disjoint pairs of permutations in Sym(S) is (properly) contained in the collection 
of semidisjoint pairs of permutations in Sym(S). Two main commutativity 
results for semidisjoint permutations are established. A counterexample is 
provided to verify that these two results cannot be combined to produce a more 
general commutativity result for semidisjoint permutations which has already 
been established for disjoint permutations. 
 

Introduction 
 
 For a nonempty set S, it is commonly known that Sym(S) endowed with 
the operation of composition of functions is a group [2, p. 38, Theorem 6.1], 
called the group of permutations on S. It is also well known that Sym(S) is 
nonabelian whenever S  ≥ 3 ([1, p. 94, Theorem 2.20],[2, p. 40, Theorem 6.3]). 
Therefore any result on commutativity in nontrivial permutation groups is 
significant. A standard commutativity result regarding disjoint permutations 
appears in most relevant texts. However, the degree of generality of this result 
varies substantially in the literature. In its weakest form, it is stated that disjoint 
pairs of cycles on a finite nonempty set commute ([1, p. 95],[2, p. 41],[3, p. 82, 
Theorem 6.2],[4, p. 131, Lemma 3.2.1]). This statement is sometimes 
generalized by extending the class of permutations from cycles to arbitrary 
permutations, while leaving the underlying nonempty set finite. The resulting 
claim is that disjoint pairs of arbitrary permutations on a finite nonempty set 
commute [5, p. 47]. Still other sources generalize the weak form by extending 
the set on which the permutations are defined from a finite nonempty set to an 
arbitrary nonempty set, while leaving the relevant permutations restricted to 
cycles. Thus the resulting statement is that disjoint pairs of cycles on an arbitrary 
nonempty set commute [6, p. 79, no. 10]. 
 These two generalizations have been combined to produce the more 
comprehensive result that disjoint permutations in general on an arbitrary 
nonempty set commute [7, Theorem 9]. This paper will define the notion of 
semidisjoint permutations and show that it generalizes the concept of disjoint 
permutations. Two commutativity results for semidisjoint permutations will be 
developed which correspond to the special cases described above for disjoint 
permutations ([5, p. 47],[6, p. 79, no. 10]). It will then be verified that these 
results cannot be extended to include general semidisjoint permutations on an 
arbitrary nonempty set as was done for disjoint permutations [7, Theorem 9]. 
Throughout this paper it is assumed that S is a nonempty set. 
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Basic Definitions 

 
 We begin with some fundamental definitions and notations which are 
pertinent to all of the following results. The initial concepts of permutations, 
Sym(S), nS , cycles, and the identity map on S are standard [7, Definition 1]. 
However, they are included here for completeness. 
 
Definition 1: If S is a nonempty set, then a permutation (or symmetry) α on S is 
a 1-1, onto function α:S→S. The set of all permutations on S is denoted by 
Sym(S). If S is a finite set of order n, then Sym(S) will be written nS , and is 
called the set of permutations on n elements. In this case S can be represented as 
S = { }n

1kk = . If α∈Sym(S) and n is a positive integer, then α is a cycle of length 

(or order) n if and only if there is a finite subset { }n
1iia =  of S such that )a( iα  = 

1ia +  for 1 ≤ i ≤ n−1, )a( nα  = 1a , and α(x) = x for each x∈S− { }n
1iia = . In this case 

we write α = ( )n21 a,,a,a � . The identity map on S is denoted by S1 . 
 

The definitions of fixed and transient points have been previously 
established [7, Definition 2]. Nevertheless, they are provided here since the 
primary definition and main results of the paper directly depend on them. 
 
Definition 2: Suppose S is a nonempty set, p∈S, and α∈Sym(S). Then p is a 
fixed point of α if and only if α(p) = p; p is a transient point of α if and only if 
α(p) ≠ p. The set of fixed points of α is αF  = { }x)x(Sx =α∈ ; the set of 

transient points of α is αT  = { }x)x(Sx ≠α∈ . 
 
 In 2011 disjoint permutations, disjoint cycles, and disjoint collections of 
permutations were defined in terms of transient points [7, Definition 7]. 
However, one major goal of this paper is to verify that the collection of disjoint 
pairs of permutations on S is contained (properly in all but the most trivial case) 
in the collection of semidisjoint pairs of permutations on S. Hence these 
definitions are repeated here due to their critical nature. 
 
Definition 3: Suppose α,β∈Sym(S). Then α and β are disjoint if and only if 

αT ∩ βT  = ∅. Consequently, if α = ( )k1 a,,a �  and β = ( )m1 b,,b �  are cycles in 

Sym(S), then α and β are disjoint if and only if ia  ≠ jb  for each i and j such 

that 1 ≤ i ≤ k and 1 ≤ j ≤ m. A collection C of permutations in Sym(S) is disjoint 
if and only if α and β are disjoint for each α,β∈C such that α ≠ β. 
 
 A quick observation provides some perspective on the phrase “disjoint 
permutations”. If α,β∈Sym(S), then by Definition 2 and Definition 3, α and β 
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are disjoint as permutations if and only if their respective collections αT  and βT  
of transient points are disjoint as sets ([1, p. 95],[6, p. 79]). 
 We now introduce the main notion of semidisjoint permutations in 
Sym(S). It will be shown that this concept generalizes that of disjoint 
permutations. Furthermore, certain previously established results [7] related to 
disjoint permutations will be extended to include semidisjoint permutations as 
well. 
 
Definition 4: Suppose α,β∈Sym(S). Then α and β are semidisjoint if and only if 
α(x) = β(x) for each x∈ αT ∩ βT . A collection C of permutations in Sym(S) is 

semidisjoint if and only if α and β are semidisjoint for each α,β∈C. 
 

Preliminary Results 
 
 Some important distinctions between disjoint and semidisjoint 
permutations should be noted. Semidisjoint permutations α and β do not require 
that αT ∩ βT  = ∅ as do disjoint permutations. Instead there is the weaker 

requirement only that α(x) = β(x) for each x∈ αT ∩ βT . A second and somewhat 

more subtle difference is that the definition of a semidisjoint collection makes 
no mention of the condition that α ≠ β as appears in the definition of a disjoint 
collection. The reason for this last distinction is revealed in the following 
corollary, and will be useful for later results.  
 
Corollary 5: If α∈Sym(S), then α is semidisjoint with itself. 
 
Proof: Clearly α(x) = α(x) for each x∈ αT ∩ αT . Hence α and α are semidisjoint 
by Definition 4.  
 
 It is noteworthy that the result in Corollary 5 is not necessarily true for 
disjoint permutations. In fact, a permutation in Sym(S) is not disjoint with itself 
except in the trivial case of the identity map S1  [7, Corollary 8].  
 We are now prepared to show that disjoint permutations are a special case 
of semidisjoint permutations. The following three results establish this fact. 
 
Corollary 6: Suppose α,β∈Sym(S). If α and β are disjoint, then α and β are 
semidisjoint. 
 
Proof: If α and β are disjoint, then αT ∩ βT  = ∅ by Definition 3. Thus it is 

vacuously true that α(x) = β(x) for each x∈ αT ∩ βT . Hence α and β are 

semidisjoint by Definition 4. 
 Alternatively, if α and β are not semidisjoint, then by Definition 4 there 
exists some x∈ αT ∩ βT  such that α(x) ≠ β(x). Therefore αT ∩ βT  ≠ ∅, and so α 
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and β are not disjoint by Definition 3. The result follows immediately from the 
contrapositive. 
 
 The result in Corollary 6 for pairs of permutations in Sym(S) can easily 
be extended to collections of permutations in Sym(S). 
 
Corollary 7: If C is a disjoint collection of permutations in Sym(S), then C is a 
semidisjoint collection of permutations in Sym(S). 
 
Proof: Suppose C is a disjoint collection in Sym(S) and α,β∈C. Then either α = 
β or α and β are disjoint by Definition 3. If α = β, then α and β are semidisjoint 
by Corollary 5. Otherwise α and β are disjoint, and thus are semidisjoint by 
Corollary 6. Therefore C is a semidisjoint collection in Sym(S) by Definition 4. 
 
 Stated differently, Corollary 6 shows that the collection of all disjoint 
pairs of permutations on S is contained in the collection of all semidisjoint pairs 
of permutations on S. However, when S is a nontrivial nonempty set, the actual 
relationship between these two collections is that of proper set containment. By 
establishing this result, it is determined that the converse of Corollary 6 is false. 
In other words, there exist semidisjoint pairs of permutations which are not 
disjoint. 
 
Theorem 8: Suppose H and K are the collections of all disjoint and semidisjoint 
pairs of permutations on S, respectively. Then H ⊆ K. Furthermore, H ⊂ K if 
and only if S  > 1. 
 
Proof: If {α,β}∈H then α and β are disjoint. Therefore α and β are semidisjoint 
by Corollary 6, and so {α,β}∈K. Hence H ⊆ K. 
 Since S is a nonempty set, then S  ≥ 1. If S  = 1, then Sym(S) = 1S  = 

{ }S1 . Furthermore, S1  is disjoint with itself [7, Corollary 8]. Consequently S1  is 
semidisjoint with itself by Corollary 6. (Alternatively, S1  is semidisjoint with 
itself by Corollary 5.) Hence H = { }}1,1{ SS  = K. 

 On the other hand, if S  > 1 then there exist p,q∈S such that p ≠ q. Define 

the cycle α = (p,q), so that αT  = {p,q} by Definition 1 and Definition 2. Then α 
is semidisjoint with itself by Corollary 5, and so {α,α}∈K. However, it is clear 
that α = (p,q) ≠ S1 , and so α is not disjoint with itself [7, Corollary 8]. 
(Alternatively, since αT ∩ αT  = {p,q} ≠ ∅, then α is not disjoint with itself by 
Definition 3.) Therefore {α,α}∉H, and so H ⊂ K. 
 
 Corollary 6 confirmed that if α,β∈Sym(S) and α and β are disjoint, then 
α and β are semidisjoint. In contrast, Theorem 8 verified that permutations in 
Sym(S) may be semidisjoint but not disjoint. For example, a permutation α is 
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considered to be semidisjoint with itself by Corollary 5. However, α is not 
disjoint with itself if αT  ≠ ∅, or equivalently, if α ≠ S1  [7, Corollary 8]. That is, 
if α = β then α and β are semidisjoint but not necessarily disjoint.  
 Although it is not true for permutations in general, this is the only way in 
which cycles in particular can be semidisjoint but not disjoint. That is, it is 
impossible for two distinct cycles to be semidisjoint but not disjoint. 
Consequently, we now show that semidisjoint cycles in Sym(S) are either 
disjoint or identical. 
 
Lemma 9: If α and β are semidisjoint cycles in Sym(S), then either α and β are 
disjoint or α = β. 
 
Proof: Suppose α and β are semidisjoint cycles in Sym(S) which are not disjoint. 
If α is a cycle of length r = 1 then α = S1 , so that αT  = ∅. Then αT ∩ βT  = ∅, 

so that α and β are disjoint by Definition 3. This is a contradiction, and so r > 1.  
 Since α and β are not disjoint, then αT ∩ βT  ≠ ∅ by Definition 3, so there 

exists some 1a ∈ αT ∩ βT . Furthermore, since r > 1 then there exists { }r
2iia =  ⊆ S 

such that α = ( )r321 a,,a,a,a � , where ia  ≠ ja  whenever 1 ≤ i < j ≤ r, )a( iα  = 

1ia +  for 1 ≤ i ≤ r−1, and )a( rα  = 1a  by Definition 1.  

 Since α and β are semidisjoint and 1a ∈ αT ∩ βT , then )a( 1β  = )a( 1α  = 

2a  by Definition 4, and so 2a ∈ αT ∩ βT  ([7, Corollary 5(a)],[7, Corollary 6(b)]). 

Similarly, since α and β are semidisjoint and 2a ∈ αT ∩ βT , then )a( 2β  = )a( 2α  

= 3a  by Definition 4, and so 3a ∈ αT ∩ βT  ([7, Corollary 5(a)],[7, Corollary 

6(b)]). 
 Continuing in this manner, we have 1ia +  = )a( iα  = )a( iβ  for 1 ≤ i ≤ r−1, 
and ia ∈ αT ∩ βT  for 1 ≤ i ≤ r. Since α and β are semidisjoint and ra ∈ αT ∩ βT , 

then )a( rβ  = )a( rα  = 1a  according to Definition 4. As a result, β is also a cycle 
of length r. Furthermore, α = ( )r321 a,,a,a,a �  = ( ))a(,),a(),a(,a 1r211 −ααα �  = 

( ))a(,),a(),a(,a 1r211 −βββ �  = β. 
 
 It is noteworthy that the result in Lemma 9 cannot be extended to include 
arbitrary permutations in Sym(S). In other words, there exist semidisjoint 
permutations α,β∈Sym(S) which are not disjoint and for which α ≠ β. In fact, 
the result in Lemma 9 cannot be guaranteed even in the case involving one cycle 
and one arbitrary permutation on a finite set. Consider the example in the 

concluding remarks of [7] in which α = ��
�

�
��
�

�

4312
4321

 and β = ��
�

�
��
�

�

3412
4321

. 

We have α,β∈ 4S  and α = (1,2) is a cycle, but β is not a cycle. Therefore αT  = 
{1,2} and βT  = {1,2,3,4}, so that αT ∩ βT  = {1,2}. Since α(1) = 2 = β(1) and 
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α(2) = 1 = β(2), then α and β are semidisjoint by Definition 4. However, 
αT ∩ βT  ≠ ∅, so that α and β are not disjoint by Definition 3. Furthermore, it is 

clear that α ≠ β since α(3) = 3 but β(3) = 4. A much more sophisticated example 
of this and other properties of semidisjoint permutations is provided in the 
concluding remarks. 
 Lemma 9 completes the prerequisites necessary to establish the first main 
result on commutativity for semidisjoint permutations. We now proceed to 
develop the final material critical for the second main commutativity result. 
More specifically, the following lemma establishes the fact that when two 
semidisjoint permutations can be factored as finite products of distinct disjoint 
permutations, then each pair of their combined factors inherits the property of 
being semidisjoint. 
 
Lemma 10: Suppose that α,β∈Sym(S), α and β are semidisjoint, α = k1 αα � , 

β = m1 ββ � , and each of { }k
1ii =α  and { }m

1ii =β  is a disjoint collection of distinct 
permutations in Sym(S). Then rα  and jβ  are semidisjoint for each r and j such 

that 1 ≤ r ≤ k, 1 ≤ j ≤ m. Furthermore, { }k
1ii =α ∪ { }m

1ii =β  is a semidisjoint collection 
of permutations in Sym(S). 
 
Proof: Suppose that 1 ≤ r ≤ k. Since { }k

1ii =α  is a disjoint collection of distinct 
permutations in Sym(S), then rα  and sα  are disjoint whenever r ≠ s. Thus if 

x∈
r

Tα , then x∉
s

Tα  whenever s ≠ r by Definition 3. Therefore x∈
s

Fα  whenever 

s ≠ r [7, Corollary 3], and so )x(sα  = x for each s ≠ r by Definition 2. 

Furthermore, since x∈
r

Tα , then )x(rα ∈
r

Tα  ([7, Corollary 5(a)],[7, Corollary 

6(b)]). By an argument similar to that above for x, )x(rα ∈
s

Fα  for each s ≠ r, 

and so )]x([ rs αα  = )x(rα  whenever s ≠ r by Definition 2. Thus )x(iα  = x for 
r+1 ≤ i ≤ k and )]x([ ri αα  = )x(rα  for 1 ≤ i ≤ r−1, so that k1r αα + � (x) = x and 

1r1 −αα � )]x([ rα  = )x(rα . Therefore α(x) = )x(k1rr1r1 ααααα +− ��  = 

)x(r1r1 ααα −�  = )]x([ r1r1 ααα −�  = )x(rα  ≠ x since x∈
r

Tα . Consequently 

x∈ αT , and so 
r

Tα  ⊆ αT . 

 Similarly, if 1 ≤ j ≤ m then β(x) = )x(jβ  ≠ x for each x∈
j

Tβ  and  

j
Tβ  ⊆ βT , and so 

r
Tα ∩

j
Tβ  ⊆ αT ∩ βT . Thus if x∈

r
Tα ∩

j
Tβ , then x∈ αT ∩ βT . 

Therefore α(x) = β(x) by Definition 4 since α and β are semidisjoint. Hence 
)x(rα  = α(x) = β(x) = )x(jβ , and so rα  and jβ  are semidisjoint. 

 Since { }k
1ii =α  and { }m

1ii =β  are each disjoint collections in Sym(S), then 

{ }k
1ii =α  and { }m

1ii =β  are each semidisjoint collections in Sym(S) by Corollary 7. 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 8 No. 1      7 

Thus rα  and jα  are semidisjoint for each r and j (1 ≤ r ≤ k, 1 ≤ j ≤ k) by 

Definition 4. Similarly, rβ  and jβ  are also semidisjoint for each r and j  

(1 ≤ r ≤ m, 1 ≤ j ≤ m). Since it was established above that rα  and jβ  are 

semidisjoint for each r and j such that 1 ≤ r ≤ k and 1 ≤ j ≤ m, then 
{ }k

1ii =α ∪ { }m
1ii =β  is a semidisjoint collection in Sym(S) by Definition 4. 

 
 Lemma 10 cannot be extended to conclude either that rα  and jβ  are 

disjoint for each r and j such that 1 ≤ r ≤ k, 1 ≤ j ≤ m or that { }k
1ii =α ∪ { }m

1ii =β  is a 
disjoint collection of permutations in Sym(S). That is, there exist disjoint 
collections { }k

1ii =α  and { }m
1ii =β  of distinct permutations for which α = k1 αα �  

and β = m1 ββ �  are semidisjoint, but for which rα  and jβ  are not disjoint for 

some r and j, and { }k
1ii =α ∪ { }m

1ii =β  is not a disjoint collection of permutations in 
Sym(S).  
 Consider the example following Lemma 9 in which α,β∈ 4S  are defined 

by α = ��
�

�
��
�

�

4312
4321

 and β = ��
�

�
��
�

�

3412
4321

. By Definition 3, each of {α} 

and {β} is a disjoint collection of distinct permutations in 4S . Furthermore, α 
and β are trivially the products of the permutations in {α} and {β}, respectively. 
Finally, it was shown above that α and β are semidisjoint. However, since αT  = 
{1,2} and βT  = {1,2,3,4}, then αT ∩ βT  = {1,2} ≠ ∅, so that α and β are not 

disjoint by Definition 3. Moreover, since it was argued above that α ≠ β, then 
{α}∪{β} = {α,β} is not a disjoint collection of permutations in 4S  according to 
Definition 3. A more substantial example is provided in the concluding remarks. 
 However, a weak form of Lemma 10 can be extended in the manner 
described above. For if the factors { }k

1ii =α  and { }m
1ii =β  of α and β, respectively, 

are each disjoint collections of distinct cycles in Sym(S) rather than general 
permutations, then { }k

1ii =α ∪ { }m
1ii =β  is indeed a disjoint collection in Sym(S). 

 
Corollary 11: Suppose α,β∈Sym(S), α and β are semidisjoint, α = k1 αα � ,  

β = m1 ββ � , and each of { }k
1ii =α  and { }m

1ii =β  is a disjoint collection of distinct 

cycles in Sym(S). Then { }k
1ii =α ∪ { }m

1ii =β  is a disjoint collection of cycles in 
Sym(S). 
 
Proof: If 1 ≤ r ≤ k and 1 ≤ j ≤ m, then rα  and jβ  are semidisjoint by Lemma 10. 

Thus if rα  ≠ jβ , then rα  and jβ  are disjoint by Lemma 9 since rα  and jβ  are 
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cycles. Since { }k
1ii =α  and { }m

1ii =β  are each disjoint collections of distinct cycles in 

Sym(S), then { }k
1ii =α ∪ { }m

1ii =β  is also a disjoint collection of cycles in Sym(S). 
 
Main Results 
 
 We are now prepared to present the main results on commutativity for 
semidisjoint permutations. These two results correspond to somewhat different 
special cases of the most general commutativity results obtained for disjoint 
permutations ([7, Theorem 9],[7, Corollary 11]).  
 Recall that a weak version of [7, Theorem 9] restricts the permutations to 
cycles, stating that disjoint cycles in Sym(S) commute [6, p. 79, no. 10]. Part (a) 
of Theorem 12 verifies that the same is true for semidisjoint cycles in Sym(S). 
More specifically, Theorem 12(a) establishes that semidisjoint pairs of cycles on 
an arbitrary nonempty set S commute.  
 Furthermore, the main commutativity result for disjoint pairs of 
permutations in Sym(S) [7, Theorem 9] was extended to disjoint collections of 
permutations in Sym(S) [7, Corollary 11]. In a similar manner, the result of 
Theorem 12(a) for semidisjoint pairs of cycles in Sym(S) is easily extended to 
semidisjoint collections of cycles in Sym(S) in part (b) of Theorem 12. 
 
Theorem 12: (Winton’s First Theorem)  
(a) If α and β are semidisjoint cycles in Sym(S), then αβ = βα. 
(b) If C is a semidisjoint collection of cycles in Sym(S), then αβ = βα  
 for each α,β∈C. 
 
Proof:  
(a) If α and β are semidisjoint cycles in Sym(S), then according to Lemma 9 
either α = β or α and β are disjoint. If α = β, then clearly αβ = βα. Otherwise α 
and β are disjoint, and so αβ = βα [7, Theorem 9]. 
 
(b) The result follows immediately from Definition 4 and Theorem 12(a). 
 
 Now recall that another weak version of [7, Theorem 9] limits the result 
to a finite nonempty underlying set while leaving the permutations arbitrary, 
stating that general disjoint permutations in nS  on a finite nonempty set 
commute [5, p. 47]. Part (a) of Theorem 13 verifies that the same is true for 
semidisjoint permutations in nS . In other words, Theorem 13(a) establishes that 
for a finite nonempty set S of order n, semidisjoint permutations in nS  commute. 
 As noted above, the result that disjoint pairs of permutations in Sym(S) 
commute [7, Theorem 9] was extended to disjoint collections of permutations 
[7, Corollary 11]. Furthermore, the fact established in Theorem 12(a) that 
semidisjoint pairs of cycles in Sym(S) commute was extended to include 
semidisjoint collections of cycles in Theorem 12(b). Similarly, part (b) of 
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Theorem 13 extends the result in Theorem 13(a) for semidisjoint pairs of 
permutations in nS  to semidisjoint collections of permutations in nS . 
 
Theorem 13: (Winton’s Second Theorem)  
(a) If α and β are semidisjoint permutations in nS , then αβ = βα. 

(b) If C is a semidisjoint collection of permutations in nS , then αβ = βα  
 for each α,β∈C. 
 
Proof:  
(a) Suppose α and β are semidisjoint permutations in nS . Since α,β∈ nS , 

then α and β can each be written as finite products α = k1 αα �  and β = 

m1 ββ �  of distinct, pairwise disjoint nontrivial cycles ([1, p. 96, Theorem 

2.21],[4, p. 133, Theorem 3.2.2]). Consequently each of { }k
1ii =α  and { }m

1ii =β  is a 
disjoint collection of distinct cycles in nS . Since α and β are semidisjoint, then 

{ }k
1ii =α ∪ { }m

1ii =β  is a disjoint collection of cycles in nS  by Corollary 11. 

Therefore λρ = ρλ for each λ,ρ∈ { }k
1ii =α ∪ { }m

1ii =β  [7, Corollary 11]. Hence  
αβ = k1 αα � m1 ββ �  = m2k11 ββααβ ��  = m3k121 ββααββ ��  == �  

m1 ββ � k1 αα �  = βα. 
 
(b) The result follows immediately from Definition 4 and Theorem 13(a). 
 
Concluding Remarks 
 
 As stated above, the most basic result related to commutativity in 
permutation groups commonly presented in literature is that disjoint cycles in 

nS  commute. This result is limited both in its restriction to cycles and its 
restriction to a finite underlying set. However, this result has been generalized in 
both aspects by extending the result for disjoint cycles in nS  to disjoint 
permutations in Sym(S) on an arbitrary nonempty set S [7, Theorem 9]. 
Theorem 12(a) extends the same basic result for disjoint cycles in nS  to 
semidisjoint cycles in Sym(S). Theorem 13(a) provides a different 
generalization by extending the same basic result for disjoint cycles in nS   
to semidisjoint permutations in nS . In the transition from Theorem 12 to 
Theorem 13, something is gained as well as lost. The result in Theorem 12  
for semidisjoint cycles is extended to general semidisjoint permutations in 
Theorem 13. However, the arbitrary nonempty underlying set S in Theorem 12 
is restricted to a finite nonempty set in Theorem 13. 
 A natural question that arises at this point is whether or not the results in 
Theorem 12 and Theorem 13 can be combined to produce a more general result 
corresponding to the one previously established for disjoint permutations in 
Sym(S) [7, Theorem 9] by showing that general semidisjoint permutations in 
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Sym(S) on an arbitrary nonempty set S commute. Unfortunately this goal cannot 
be achieved, as illustrated by the following counterexample.  
 In the Cartesian plane 2R , define A = { }1n;egerintanisn)0,n( −≤ ,  

B = { }1n;egerintanisn)n,0( −≤ , and C = { }0n;egerintanisn)n,0( ≥ . 

Define α: 2R → 2R  by α(n,0) = (n+1,0) for each (n,0)∈A; α(0,n) = (0,n+1) for 
each (0,n)∈C; α(x,y) = (x,y) for each (x,y)∈ )CA(2 ∪−R . Similarly, define 

β: 2R → 2R  by β(0,n) = (0,n+1) for each (0,n)∈B∪C; β(x,y) = (x,y) for each 
(x,y)∈ )CB(2 ∪−R . Therefore α,β∈Sym( 2R ). (See Figure 1 below.) 
 

 
 
Figure 1 
 
 Then αT  = A∪C and βT  = B∪C, so that αT ∩ βT  = C. Furthermore, if 

(0,n)∈ αT ∩ βT  = C then α(0,n) = (0,n+1) = β(0,n). Therefore α and β are 

semidisjoint by Definition 4. 
 Since (−1,0)∈A then α(−1,0) = (0,0). However, (−1,0)∉B∪C, so that 
β(−1,0) = (−1,0). Furthermore, since (0,0)∈C then β(0,0) = (0,1). Therefore 
αβ(−1,0) = α[β(−1,0)] = α(−1,0) = (0,0). On the other hand, βα(−1,0) = 
β[α(−1,0)] = β(0,0) = (0,1). Thus αβ(−1,0) ≠ βα(−1,0), and so αβ ≠ βα. 
 Hence α and β are semidisjoint permutations in Sym( 2R ) with the 
property that αβ ≠ βα. Consequently, Theorem 12 and Theorem 13 cannot be 
combined and extended to show that general semidisjoint permutations on an 
arbitrary nonempty set S commute. Thus the corresponding result for disjoint 
permutations [7, Theorem 9] is not valid for semidisjoint permutations. 
 Additionally, since αT ∩ βT  = C ≠ ∅ then α and β are not disjoint 

according to Definition 3. Furthermore, it is clear that α ≠ β since, for example, 

α 

β α 

β 

(0,1) 

(0,-1) 

(-1,0) (-2,0) 

(0,0) 
x 

y 
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α(−1,0) = (0,0) but β(−1,0) = (−1,0). Therefore α and β are distinct permutations 
in Sym( 2R ) which are semidisjoint but not disjoint. Referring to the comments 
following Lemma 9, α and β provide an additional example that the result in 
Lemma 9 for semidisjoint cycles in Sym(S) cannot be extended to arbitrary 
semidisjoint permutations in Sym(S). 
 Lastly, it was shown above that α and β are semidisjoint. Furthermore, α 
and β are trivially the products of the permutations in {α} and {β}, respectively. 
Finally, each of {α} and {β} is clearly a (singleton) disjoint collection of 
distinct permutations in Sym( 2R ) by Definition 3. However, it was also shown 
above that α ≠ β and that α and β are not disjoint. Therefore {α}∪{β} = {α,β} 
is not a disjoint collection in Sym( 2R ) according to Definition 3. Referring to 
the comments following Lemma 10, α and β provide another example that the 
result in Lemma 10 cannot be extended to conclude either that rα  and jβ  are 

disjoint for each r and j such that 1 ≤ r ≤ k, 1 ≤ j ≤ m or that { }k
1ii =α ∪ { }m

1ii =β  is a 
disjoint collection of permutations in Sym(S). 
 
† Richard Winton, Ph.D., Tarleton State University, Texas, USA 
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