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Abstract 

 
In this paper we study the stability of systems of the form 

        

Where  

A solution of the system  is stableif the solutions of  

which start close to  at the origin, remain close to  for all  in a 

certain sense. This actually means that small disturbances in the system that 

effect small perturbations to the initial conditions of solutions close  do  

not really cause a considerable change to  these solutions over the interval . 

The various concepts of stability that we study in this paper are actually dealing 

with the fashion in which the solutions close to initially behave on infinite 

subintervals of R. 

 Although there are numerous types of stability, we present here only 

five types that are most important in the applications of linear and perturbed 

linear systems. 

Keywords: Differential system, solutions of systems  of differential equations, 

stability of solutions, Eigen values of a system, Perturbed differential equation 

1. DEFINITIONS OF STABILITY[1]:In the following definitions 

 will denote a fixed solution of (1.1) defined on [0,  

Definition 1.1 The solution  is called “stable”for every there 

exits  such that every solution,  of (1.1) with 
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 exists and satisfied  on The 

solution  is called “asymptotical”, if it is stable and there exists constant 

 such that whenever  

The solution  is called “instable” if it is not stable. 

Definition 1.2 The solution  is called “uniformly stable: if for 

every  there exists  such that every solution,  of (1.1) with 

 for some  exists and satisfied  

on It is called “uniformly asymptotically stable”if it ,is uniformly stable 

and there exists with the property, for every there exists  

such that  for some  implies  for 

every . 

It is obvious that uniform stability implies stability and that uniform asymptotic 

stability implies asymptotic ability. 

Definition 1.3 The solution  is called “strongly stable” if for every  

there exists  such that every solution  of (1.1) with 

 for some  exists and satisfies  

on  

Naturally, strong stability implies uniform stability. We should mention here 

that the definition of stability can be replaced by any but fixed interval of 

the real line. We should also mention that  can be considered to the zero 

solution. In fact, if  is not a solution of (1.1), then the transformation 

 where  is a fixed solution of (1.1) into the system. 
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This system has the function  as a solution. The stability properties of 

this solution correspond to the stability properties of the solution.  

2. LINEAR SYSTEMS[2],[1] 

In this section we study the stability properties of the linear systems. 

 

where  arecontinuous. It is clear that the solution  

of the differential function of (2.1)satisfiesone of definitions of stability of the 

previous section if and only if the zero solution of (2.1) has the same property.  

This follows from the fact that stability involves differences of solutions, 

combined with the superposition principle. Consequently, we may talk about the 

stability of the differential function of (2.1) instead of the stability of one of its 

particular solutions. This will be done in the sequel even if  

Theorem 2.1 Let  be a fundamental matrix of (2.1). Then (2.1)is stable 

if and only if there exists a constant  with. 

 

The system (2.1) is asymptotically stable if and only if 

 

The system (2.1) is uniformly stable if and only if there exists a constant  

with. 

 

The system (2.1) is uniformly asymptotically stable if and only if there exist a 

constant such that. 
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The system (2.1) is strongly stable if and only if there exists a constant K>0 such 

that: 

 

Proof:We may assume that  because the conditions in the hypothesis 

hold for any fundamental matrix of (2.1)  ,if they hold for a particular one. 

Assume first that (2.2) holds, and let  be a solution of (1.1) with 

Then, since  if for a given  we choose 

, we have. 

 

Thus, System (2.1) is stable conversely, suppose hat (2.1) is stable and 

Fix  with the property.  

 

For every  with For a fixed , we get 

 

Since  ranges over the interior of the unit ball, we obtain 

 

This completes the proof of the first case because (2.7) holds for arbitrary  

Now assures that (2.7) holds. Then (2.2) holds for some K>0 and 

 

For any solution  of (2.1)with . Thus (2.1) is asymptotically stable. 

Conversely, assume that (2.1) is asymptotically stable. Then there exists  

such that  for every  with  Choose 
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 Since  where  is the first column , we obtain 

that every  entry  of first column of  tends as  similarly one 

conclude that every entry of  tends to zero as . This completes the 

proof of this case. In order to prove the third conclusion of the theorem, let (2.1) 

hold and let  be given. Then  is the solution of (2.1) 

with . Thus, 

 

for any  with  proves the uniform stability of (1.1) with 

Now assume that (1.1) is uniformly stable. Fix  

such that  for any  with  any  

and any from this point on, the proof follows as the sufficiency part of the 

first case and is therefore omitted. 

In the fourth case let (2.3) hold. Then (2.1) is uniformly stable by virtue of (2.3). 

Now let  be given, and let  be the solution of (2.1) 

with  

 

for every where  Consequently, System (2.1) 

uniformly asymptotically stable.  Fix  as in definition 

(2.6). Then  implies. 
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Consequent working as in the firstcase, we find 

 

Where  ,= . Now (2.3)  implies the existence of a constant  such that 

 

Thus, given , there exists an integer  such  that 

 it follows that 

 

 

 

 

 

If we take  then 

 

 

For every  Thiscompletes theproof of the case of uniform asymptotic 

stability. 

 Assume now that (2.5) holds and, given choose  

then we have 
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Whenever  and  Thus system (2.1) is strongly stable. To 

show the converse, let (1.1) be strongly stable and fix  such that 

 

Whenever . In fact, this follows from (2.8) if we take  

 

Provided that . In fact, this follows from (2.8) if we 

take  respectively. Thus, as above, 

 

It follows that  (2.5) holds for  

Before we consider System (2.1)with a constant matrix A, we should note that in 

the caseof an “autonomous” system (that is,  stability is 

equivalent to uniform stability and asymptotic stability is equivalent to uniform 

asymptotic stability. This is consequence of the fact that in this case 

is a solution of (1.1) if is a solution. This is true for any 

number . Now consider the system 

 

With  If  is an eigenvalue of A, then the dimension of the 

“Eigenspace” of  (the subspace of C” generated by the eigenvectors of A 

corresponding to  is called “index” of  The following theorem characterized 

the fundamental matrices of (2.9). 
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Theorem 2.2:  Let  be  the fundamental matrix of (2.9) with 

 Then every entry  takes the form  

or the form , where   is some 

eigenvalue of A and p,q are real polynomials in t. the degree d of the polynomial 

 satisfies  where m is the multiplicity of  and  its 

,index. Furthermore, if  there is at least one entry of  such that  

Now we are ready to establish the stability properties of (2.9) in terms of the 

Eigenvalue of the matrix A. 

Theorem 2w.3: The system (2.9) is stable and if and only if every Eigenvalue of 

 that has multiplicity m equal to its index r has nonpositive real part, and every 

other Eigenvalue has negative real part. The system (2.9) is asymptotically 

stable if and only if every Eigenvalue of  has negative real part. It is strongly 

stable if and only if Eigenvalue of  is purely imaginary and multiplicity equal 

to its index. 

Proof. Let  Then (2.9) is stable if and only if  

where is a constant. Now let  be an Eigenvalue of , then every 

entry of  corresponding to  will be bounded if and only if  for  

and  for  This completes the proof  of our first assertion. The system 

(2.9) is asymptotically stable if and only if  as . This is of course 

possible if and only if every Eigenvalue of has negative real part. The system 

is strongly stable if and only if there exists a constant  such that 

 for every Since solves the 

system  and  is an Eigenvalue of  if and only if  is an 
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Eigenvalue of  these inequalities can hold if and only if every Eigenvalue of 

 has zero real part and  

3. THE MEASURE OF A MATRIX; FURTHER STABILITY 

CRITERIA[1],[3] 

Definition 3.1:Let A be an  matrix. Then  Denotes the “measure of 

A” which is defined by 

 

Theorem 3.1:The measure  exists as a finite number for every  

Proof.Let be  given such that  and consider the function 

 

Then we have 

 

or 

 

Thus,  is an increasing function of . On the other hand 

 

This impliesthe existence of the limit of the function  as  it follows 

that  exists and is finite. 

Theorem 3.2:Let  be given. Then  hasthe following properties: 

(i.)  for any  

(ii.)  
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(iii.)  

(iv.)  

Proof. Case (i) is trivial and (ii)follows from the fact, that for all 

 where   is as in the proof of Theorem (3.2). Inequality (iii) follows from 

 

 

Inequality (iv) follows easily from (ii) and (iii). 

The following theorem establishesthe relationship between the solution of (2.1) 

and the measure of the matrix  

Theorem 3.3: Let  becontinuous. Then for every  with 

 we have 

 

Where is any solution of (2.1). 

Before we provide a proof of Theorem 3.3, we establish the auxiliary lemma 

Lemma 3.1: Let  be 

continuous and such that 

 

Where  denotes the rightderivative of the function  

where  is the solution of 
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Proof:Let  be an arbitrary point. We will show that on 

the interval Consider first the solution  of the problem 

 

respectively, Fix  and assume the existence of a point  such 

that  then there exists  such that  

and  on  From (3.2), we obtain that 

 

 

 

 

Consequently,  is small right n eighborhood of the point . This is 

a contradiction to  on . Thus  for any 

and any  Now we use Gronwall’s inequality to show 

that (3.2), actually implies 

 

For  thus, the sequences  is Cauchy. It follows  that 

 uniformly on  where is the solution 

problem  (3.1)on the  interval  Since  is arbitrary, it follows that 

 

It should be noted that a corresponding inequality holds if  is the left 

derivative of  on  

Proof ofTheorem  3.3:  We  are planning to show that  
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To this end, we first notice that for any two vectors  that limit  

 

exists as a finite number. To show this, it suffices to show that the function 

 

is increasing and bounded  by  on  We omit the proof, which  is very 

similar  to the corresponding one for  the function  in the proof  of Theorem 

3.1. It follows that the limit. 

 

exists as a finite number. We will show that this number equals . In fact, 

let  be given. Then we have 

 

 

 

which proves (3.3) and consequently  

 

 

 

Applying Lemma 4.11, we obtain 
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forevery . In order to find corresponding lower bound of , let 

then  satisfies the system. 

 

Thus, as in (3.5), we get 

 

 

or 

 

 

This completes the proof, 

We are now ready for the main theorem of this section 

Theorem 3.4:Consider system (2.1) with continuous 

If 

 

then (1.3) is unstable if 

 

then (1.3) is stable if 
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then (1.3) is asymptotically stable if 

 

 

then (1.3) is uniformly stable if for some  

 

then (1.3)  is uniformly asymptotically stable. 

Table 4.13 

      

     

 Largest Eigenvalueof  

      Max   

      Max  

 

4. PERTURBED LINEAR SYSTEMS[4],[7],[1] 

In this section we study the stability of systems of form 

 

where  are continuous functions with 

 We start with a theorem concerning the asymptotic stability 

of  the differential function of (1.1). The proof of this theorem is based on 

Lemma (3.1). 

Lemma 4.1: Let  be a fundamental matrix of the system (2.1). Assume 

further that there exists a constant  such that 
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Then there exists a constant  such that 

 

Proof.Let . Then we have 

 

from which we obtain 

 

 

 Now let  denote the integral on the right hand side of (4.3). Then 

we have 

 

Dividing (4.4) by  and integrating from  we obtain 

 

Consequently, 

 

for every . We choose M so large that both 

 

and 

 

This completes the proof 
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Theorem 4.2: Let  be a fundamental matrix of  such that 

 

Moreover, let 

 

with  stratifying . Then the zero solution of is asymptotically 

stable. 

Proof: Let be the fundamental matrix of  with then since 

 forany otherfundamental matrix of . Lemma 

4.1 holds for this particular . If  is a local solution of the 

differential function of (2.1) defined to right of  then satisfies the 

system 

 

Using the variation of constants formula for the system we obtain 

 

Letting be such that we obtain 

 

which implies 

 

It follows that 
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as long as  defined.  This implies that  is continuable  and the 

zero solution is stable. Now we show that  as . To this end, let 

 

and pick  such that  If , the, since  there exists  

such that 

 

 for every , Thus,  (4.5) implies 

 

 

 

 

 

Taking the lim sup above as , we obtain ; that is, a 

contradiction. Thus,   This completes the proof. 

 The following theorem has a corollary concerning the uniform stability of 

system solution of the differential function of (2.1). 

Theorem 4.3  

where K  is positive constant. Moreover, let 

 

where  is continuous and such that 
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Then if 

 

every local solution  ofsolution of the differential function of (2.1), defined 

to the right ,of the point  is continuable  and stratifies 

 

for every .  

  

Proof:From the variable of constants formula (4.5), with  replacing 0, we have 

 

for . Applying Crownwall’s inequality, we obtain 

 

Corollary 4.4:  If the system (1.1) is uniformly stable, and if F is as in 

Theorem 2.2, then the zero solution of the differential function of (1.1)is 

uniformly stable. In particular, the uniform, stability of (2.1)implies the uniform 

stability of the system. 

 

where  iscontinuous and such that 
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The uniform asymptotic stability of the system the differential function for (1.1) 

follows theorem 4.5. 

Theorem 4.5:  Let  be a fundamental matrix of (2.1) such that 

 

where  are positive constants. Let 

 

with  a positive constant, satisfying   Then if   every 

solution   ofthe differential function for (1.1), defined  in a right 

neighborhood of   exist for  and satisfies 

 

for every  with  

 Proof:From the variation of constants formula. 

 

in a right neighborhood of the point  we  obtain 

 

Consequently, if  we obtain 

 

An application of Corwnwall’s inequalityyields 

 

for , and 

 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 11 No. 2     62 

Obviously, is continuable  (see Theorem 3.8) 

Corollary 4.6:  If (2.1) is uniformly asymptotically stable and if the 

constant  of Theorem 4.5 is sufficiently small, then the zero solution of the 

differential function of (1.1) is uniformly asymptotically stable the differential 

function of (1.3). In particular, the uniform asymptotic stability of the system 

(2.1) implies the same property for the system (4.6) where   is 

continuous and such that  as  

† Eziokwu, C. Emmanuel, Ph.D.  Michael Okpara University of Agriculture, 

Umudike, Abia State, Nigeria. 
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