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Abstract 
 
  A brief history of the main theorem in this paper is presented. Due to  
some variation in the literature, basic relevant definitions and notations are  
also provided. Preliminary results are then developed for a particular class of 
homogeneous continua. It is shown that each point of an arbitrary open set in 
such a continuum is contained in a special type of subcontinuum, which is  
itself contained in the open set. Furthermore, each point of the space has a 
neighborhood base consisting of the same type of subcontinua. We then prove 
that any continuum in this class containing a subcontinuum with three point 
boundary must also contain a subcontinuum with two point boundary. It is then 
shown that all homogeneous metric continua which can be separated by either 
two or three points can be separated by each pair of points. Finally, we establish 
that all such continua are Hausdorff circles. 
 

Introduction 
 
 In 1944 Gustave Choquet claimed that every homogeneous, compact plane 
continuum is necessarily a simple closed curve [3, pp. 542-544]. However, in 
1948 Edwin E. Moise proved the existence of a compact plane continuum which 
is not an arc, but which is homeomorphic to each of its subcontinua [11, pp. 
581-594]. Furthermore, R. H. Bing verified in 1948 that the continuum 
established  
by Moise is in fact homogeneous [1, pp. 729-742], thereby refuting the earlier 
claim by Choquet. The following year in 1949, F. Burton Jones provided two 
additional conditions [8, pp. 113-114], either of which added to the hypothesis 
of Choquet’s paper, would validate the claim made by Choquet. 
 Pursuing these results, Forest W. Simmons showed in October 1980 that if a 
homogeneous continuum is separated by some pair of points, then it is separated 
by each pair of its points [12, pp. 62-73, Main Theorem]. Since it was shown by 
Winton that a homogeneous continuum cannot be separated by a single point 
[16, Theorem 2], then such continua are Hausdorff circles.  
 Several of Simmon’s preliminary results were generalized in September 
2007 by Richard A. Winton ([15, Lemma 2],[15, Corollary 5],[15, Theorem 6]). 
In February 2009 Winton established the precise conditions under which 
subcontinua with finite boundaries in a homogeneous continuum can be 
separated by a single point ([16, Theorem 5],[16, Theorem 6]). Winton then 
showed in September 2010 that the boundaries of a specific category of 
subcontinua in a certain class of homogeneous metric continua form a partition 
of the collection of all boundary points of the same class of subcontinua  
[17, Theorem 5]. Finally, in February 2017 it was verified by Winton that  
each point in a specific type of continuum is the intersection of a maximal  



 

Journal of Mathematical Sciences & Mathematics Education Vol. 12 No. 1    7 

chain from a particular class of subcontinua [18, Theorem 10] relative to a 
partial ordering defined by Winton which is dependent on the topology of the 
space [18, Definition 9]. 
 We now proceed with definitions which are fundamental for the results  
that follow. Notations for these concepts are also provided since they are not 
uniform throughout the literature. For completeness, included in the following 
definitions is that of the above mentioned partial order on a topological space 
established by Winton in 2017 ([18, Lemma 8], [18, Definition 9]). 
 

Basic Definitions 
 
 In the most general sense, a continuum is a compact, connected, Hausdorff 
topological space. In particular, a metric continuum is a compact, connected 
metrizable space. A Hausdorff circle is a Hausdorff topological space which 
cannot be separated by a single point, but which is separated by each pair of its 
points. 
 If H is a subset of a topological space X, then Int(H), Bd(H), and Cl(H)  
are the topological interior, boundary, and closure of H in X, respectively. A 
separation AB of H is a partition of H into nonempty relatively open sets A and 
B in H. Furthermore, H separates X if and only if X is connected but XH is not 
connected. If n is a positive integer and X is connected, then n is the separation 
number of X, denoted by S(X), if and only if X contains a subset with n points 
which separates X, but X contains no subset with less than n points which 
separates X. In other words, S(X) is the minimal number of points required to 
separate X. 
 If n is an integer and n  1, then H is an n-pod of X if and only if H is a 
subcontinuum of X whose boundary contains precisely n points. As special 
cases, 2-pods in X will be called bipods, while 3-pods in X will be referred to  
as tripods. An abipodic space is a topological space which contains no bipods. 
Furthermore, n is the pod number of X, denoted by P(X), if and only if X 
contains an n-pod but X contains no k-pod for each integer k with the property 
that 1  k  n. 
 Finally, suppose that X is a topological space and S is an arbitrary 
collection of subsets of X. The partial order  on S defined by AB if and only 
if either  
A  Int(B) or A = B for each A,BS is called the ordering of S by interior 
inclusion ([18, Lemma 8],[18, Definition 9]). 
 

Preliminary Results 
 
 In an abipodic homogeneous metric continuum X that contains a tripod, 
each point of an arbitrary open set is contained in a tripod which in turn is 
contained in that open set. In particular, every subset H of X has the property 
that each point in the interior of H is contained in a tripod which is contained in 
the interior of H. 
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Lemma 1: Suppose X is an abipodic homogeneous metric continuum which 
contains a tripod, V is an open set in X, and pV. Then there is a tripod A in X 
such that pA  V. 
 
Proof: Since X is an abipodic homogeneous continuum which contains a tripod, 
then P(X) = 3 [18, Lemma 2(c)]. Consequently there is a maximal chain M of 
tripods in X relative to ordering by interior inclusion such that 

MH

H


 = {p}  

[18, Theorem 10]. Thus M is a nonempty nested collection of tripods in X for 
which H  Int(K), K  Int(H), or H = K for each H,KM.  
 For each HM, H is a compact subset of the Hausdorff space X, so that H is 
closed in X ([2, p. 81, Corollary 5.13],[5, p. 165, Theorem 6.4]), and so XH is 
open in X. Since pV then XV  X{p} = X 

MH

H


 = 
MH

)HX(


  by De 

Morgan’s Laws, and so S =   MHHX   is an open cover of XV. Furthermore, 

since V is open in X then XV is a closed subset of the compact space X, and so 
XV is compact ([10, p. 162, Theorem 2.11],[13, p. 111, Theorem A]). Thus M 

contains a finite subset  n
1iiH   such that XV  

n

1i
i )HX(



  = X 
n

1i
iH



 by De 

Morgan’s Laws, and so 
n

1i
iH



  V. 

 However, since M is a nested collection, then there is some t, 1  t  n, such 

that tH   iH  for 1  i  n. Therefore tH  = 
n

1i
iH



  V. Finally, since tH M 

then p{p} = 
MH

H


  tH . Consequently tH  is a tripod in X with the property 

that p tH   V. 

 
 A special case of Lemma 1 will be useful. Specifically, when a subset of a 
space has nonempty interior, then each point in the interior of that subset is 
contained in a tripod which is, in turn, contained in that interior. Hence we have 
the following result. 
 
Corollary 2: Suppose X is an abipodic homogeneous metric continuum which 
contains a tripod, H  X, and pInt(H). Then there is a tripod A in X such that 
pA  Int(H). 
 
Proof: Int(H) is an open set containing p. Thus by Lemma 1 there is a tripod A 
in X such that pA  Int(H). 
 
 Suppose that a compact Hausdorff topological space X contains a nested 
collection C of compact subsets. If the intersection of the sets in C is contained 
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in an open set in X, then at least one of the subsets of X in C must also be 
contained in that open set. 
 
Lemma 3: Suppose that C is a nested collection of compact sets in a compact 
Hausdorff topological space X, V is an open set in X, and 

CH

H


  V. Then  

K  V for some KC. 
 
Proof: For each HC, H is a compact subset of the Hausdorff space X. 
Therefore H is closed in X ([2, p. 81, Corollary 5.13],[5, p. 165, Theorem 6.4]), 
so that XH is open in X for each HC. Since V is open in X as well, then  
S = {V}  CHHX   is a collection of open sets in X. Furthermore, since  


CH

H


  V then XV  X 
CH

H


 = 
CH

)HX(


  by De Morgan’s Laws, and so  

X  
SN

N


. Therefore S is an open cover for X. Since X is compact, then S has  

a finite subset T for which X  
TN

N


. Define R = T{V}, so that R is a finite 

subset of   CHHX  . Consequently there is a finite subset  n
1iiH   of C such that 

R =  n
1iiHX  . 

 Since X  
TN

N


 then XV  
RN

N


 = 
n

1i
i )HX(



  = X 
n

1i
iH



 by De 

Morgan’s Laws, and so 
n

1i
iH



  V. However, since  n
1iiH    C and C is  

a nested collection, then there is some t, 1  t  n, such that tH   iH  for  

1  i  n. Hence tH  = 
n

1i
iH



  V. 

 We now begin the final approach to the main theorem. The next result 
establishes that in an abipodic homogeneous metric continuum containing a 
tripod, each point has a base for its neighborhood system consisting of a chain  
of tripods in X relative to ordering by interior inclusion. Furthermore, this  
chain is maximal in the collection of all tripods in X. 
 
Lemma 4: Suppose X is an abipodic homogeneous metric continuum which 
contains a tripod. Then for each pX, there is a maximal chain in the collection 
of all tripods in X relative to ordering by interior inclusion which is a base for 
the neighborhood system of p. 
 
Proof: Suppose pX. The set S of all tripods in X is partially ordered by interior 
inclusion  ([18, Lemma 8],[18, Definition 9]). Furthermore, {p} = 

MH

H


 for 

some maximal chain M in S relative to  [18, Theorem 10]. 
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 Assume that pBd(K) for some KM. Since Int(K) is a nonempty open set, 
then by Lemma 1 or Corollary 2 there is a tripod B in X such that B  Int(K), 
and so BK. Suppose that NM. Since KM as well and M is linearly ordered 
by , then either NK or KN. Thus either N  Int(K), K  Int(N), or K = N. 
However, if N  Int(K) = KBd(K) ([9, p. 46, Theorem 10],[14, p. 28, Theorem 
3.14(b)]), then pN since pBd(K). Since NM then p 

MH

H


 = {p}, which is 

a contradiction. Therefore either K  Int(N) or K = N. In either case we have  
B  Int(K)  Int(N) = NBd(N) ([9, p. 46, Theorem 10],[14, p. 28, Theorem 
3.14(b)])  N since N is a tripod. Consequently BN and B  N for each NM. 
As a result, M{B} is a chain in S which properly contains M. However, this 
contradicts the maximality of M, and so pBd(H) for each HM.  
 However, since p 

MH

H


, then pHBd(H) = Int(H) ([9, p. 46, Theorem 

10],[14, p. 28, Theorem 3.14(b)]) for each HM. Thus H is a neighborhood  
of p for each HM. 
 Now suppose U is an arbitrary neighborhood of p. Then there is an open  
set V in X such that pV  U. Since M is a nested collection of tripods and 


MH

H


 = {p}  V, then D  V  U for some DM by Lemma 3. Hence M is a 

base for the neighborhood system of p.  
 Thus M is a maximal chain of tripods in S relative to ordering by interior 
inclusion which is a neighborhood base for p. Finally, since p was chosen 
arbitrarily in X (or since X is homogeneous), then each point of X has a 
neighborhood base consisting of a maximal chain of tripods in S relative to 
ordering by interior inclusion. 
 
 If a homogeneous metric continuum contains a tripod, then it must also 
contain a bipod. This result will now be confirmed in the contrapositive form. 
Thus we show that if a homogeneous metric continuum contains no bipods,  
then it cannot contain a tripod. 
 
Theorem 5: An abipodic homogeneous metric continuum contains no tripods. 
 
Proof: Suppose X is an abipodic homogeneous metric continuum. If X contains  
a tripod K then there exist p,q,rX such that Bd(K) = {p,q,r}. Since X is 
Hausdorff then {q,r} is closed in X ([7, p. 64, Corollary 3.12],[13, p. 130, 
Theorem A]), and so X{q,r} is an open set containing p. By Lemma 4 there  
is a tripod neighborhood H of p such that such that H  X{q,r}, so that 
{q,r}H = . Furthermore, since H is a neighborhood of p then pInt(H),  
and so Bd(K)Int(H)  {p}  . 
 Define H = Cl(XH) and K = Cl(XK). Then H and K are tripods in X 
with Bd(H) = Bd(H) and Bd(K) = Bd(K) [15, Theorem 6].  
 Assume that Bd(H)Int(K) = . Then Bd(H)(XK) =  ([4, p. 142, 
Theorem 30.2],[6, p. 72, Theorem 4.11(4)]), so that Bd(H)  K. Since pBd(K) 
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and pInt(H) = HBd(H) ([9, p. 46, Theorem 10],[14, p. 28, Theorem 3.14(b)]) 
then Bd(H)  Bd(K). Furthermore, since X is an abipodic homogeneous 
continuum and contains a tripod, then P(X) = S(X) = 3 [18, Lemma 2(c)].  
Thus Bd(H)Bd(K) =  ([17, Lemma 4],[17, Theorem 5]). Since Bd(H)  K 
and Bd(H)Bd(K) =  then Bd(H)  KBd(K) = Int(K) ([9, p. 46, Theorem 
10],[14, p. 28, Theorem 3.14(b)]), so that K = XInt(K) ([4, p. 142, Theorem 
30.2],[6, p. 72, Theorem 4.11(4)])  XBd(H) = Int(H)Int(H) ([4, p. 142, 
Theorem 30.2],[6, p. 72, Theorem 4.11(4)]). Since Int(H) and Int(H) are 
mutually separated and K is connected, then either K  Int(H) or K  Int(H) 
[14, p. 192, Corollary 26.6]. Since it was shown above that pBd(K)Int(H), 
then   Bd(K)Int(H) = Bd(K)Int(H)  KInt(H). Therefore K  Int(H), 
and so {p,q,r} = Bd(K) = Bd(K)  K  Int(H)  H. However, it was 
established above that {q,r}H = . This is a contradiction, and so 
Bd(H)Int(K)  . 
 Thus {H,H} and {K,K} are pairs of complementary tripods in X [15, 
Definition 7] such that Bd(K)Int(H)   and Bd(H)Int(K)  . Since it 
was shown above that P(X) = 3, then K  Int(H) [18, Lemma 6], so that  
{q,r}  Bd(K)  K  Int(H)  H. As above, however, this contradicts the 
previously established fact that {q,r}H = . Hence X contains no tripods. 
 
 We are now prepared to present the main result. A homogeneous metric 
continuum which can be separated by some subset of two or three points can,  
in fact, be separated by any two of its points. Consequently, the continuum is  
a Hausdorff circle. 
 
Main Theorem 
 
Theorem 6: If a homogeneous metric continuum X is separated by two or three 
of its points, then X is separated by each pair of its points. Consequently X is a 
Hausdorff circle. 
 
Proof:  
Case 1: If X is separated by two of its points, then X is separated by each pair of 
its points [12, p. 62, Main Theorem]. However, X is not separated by any single 
point [16, Theorem 2]. Consequently X is a Hausdorff circle. 
 
Case 2: Now suppose that X is separated by three of its points, but X is not 
separated by any two of its points. Since X cannot be separated by a single  
point [16, Theorem 2], then S(X)  1. Furthermore, since X is not separated  
by any two of its points, then S(X)  2. Therefore X contains no bipods by the 
contrapositive of [15, Lemma 3], and so X is abipodic. Since S(X)  2 and X is 
separated by three of its points, then S(X) = 3 and there exist p,q,rX such that 
{p,q,r} separates X. As a result there is a separation AB of X{p,q,r}. Thus 
A{p,q,r} and B{p,q,r} are tripods in X [15, Lemma 2]. Consequently, X is 
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an abipodic homogeneous metric continuum which contains a tripod, which 
contradicts Theorem 5. 
 Thus if X is separated by three of its points, then X is separated by two  
of its points. Hence X is separated by each pair of its points [12, p. 62, Main 
Theorem]. Since X is not separated by any single point [16, Theorem 2], then  
X is a Hausdorff circle. 
 
Alternate proof of Case 2: 
 Suppose that X is separated by three of its points. Then S(X)  3 and there 
exist p,q,rX such that {p,q,r} separates X. Thus there exists a separation AB 
of X{p,q,r}. 
 Assume that S(X) = 3. Therefore A{p,q,r} and B{p,q,r} are tripods in  
X [15, Lemma 2], so that P(X) = S(X) = 3 [15, Corollary 4]. Since X contains 
tripods, then X contains a bipod by the contrapositive of Theorem 5, so that  
P(X)  2. However, this contradicts the above conclusion that P(X) = 3, and  
so S(X)  3.  
 Since it was established above that S(X)  3, then S(X)  2. However,  
since X cannot be separated by a single point [16, Theorem 2], then S(X)  2. 
Therefore S(X) = 2, so that X is separated by some pair of its points. 
Consequently X is separated by each pair of its points [12, p. 62, Main 
Theorem]. Furthermore, since no single point separates X [16, Theorem 2],  
then X is a Hausdorff circle. 
 
 As a result of Theorem 6 (or Theorem 5), we have a somewhat surprising 
consequence. The result is the final Corollary. 
 
Corollary 7: There exist no homogeneous metric continua with pod number 3. 
 
Proof: Suppose that X is a homogeneous metric continuum with P(X) = 3.  
Then X contains a tripod H with Bd(H) = {p,q,r} for some p,q,rX. Since X 
contains the tripod H, then S(X) = P(X) = 3 [15, Corollary 4]. Furthermore, 
Bd(H) separates X [15, Lemma 3]. Since X is separated by {p,q,r}, then X is  
a Hausdorff circle by Theorem 6. Therefore X is separated by {p,q}, so that 
S(X)  2. (In fact, since is has been established that X cannot be separated by a 
single point [16, Theorem 2], then S(X) = 2.)  
 This contradicts the fact established above that S(X) = 3. Hence there exist 
no homogeneous metric continua with P(X) = 3. 
 
Alternate proof: If X is a homogeneous metric continuum with P(X) = 3, then  
X contains a tripod. Therefore X contains a bipod by (the contrapositive of) 
Theorem 5, and so P(X)  2 by the definition of pod number.  
 However, this contradicts the hypothesis that P(X) = 3. Hence there exist  
no homogeneous metric continua with P(X) = 3. 
 
† Richard Winton, Ph.D., Tarleton State University, USA 
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