
Journal of Mathematical Sciences & Mathematics Education Vol. 12 No. 2    13

Measure of Synchronization Time of Small-World 
Networks Using Dominant Eigenvalue

Menaka Navaratna, Ph.D. ‡
Channa Navaratna, Ph.D. †

Abstract

A circadian pacemaker in mammals, located in the suprachiasmatic nucleus of 
the hypothalamus (SCN), coordinates daily rhythms of physiology and behavior. 
This includes both temporal adjustments as well as biological rhythms such as 
heart rate, sleep-wake cycles, hormone release, cell regeneration, etc. 
Disruptions to circadian rhythms can have adverse health effects [1], [2].
Circadian rhythm is presumed to be generated via the interactive behavior of a 
network of coupled oscillators. The exact nature of the connection patterns of 
these networks are yet to be discovered. Topology of nearest neighbor 
connections have the drawback of long transient response. Strogatz [3] and 
others have suggested that a few long distance interconnections may have a 
dramatic effect in reducing the transient time. These interconnections are 
thought to occur in a random manner. Here we observe that the transient 
response can be related to a dominant eigenvalue of the linearized system, and 
hence it is important to understand the probabilistic relationship between the real 
part of the dominant eigenvalue and the long distance connections. The 
probability distribution, which determines the choice of long distance 
connections, plays an important role in determining the transient response. In
some cases, the improvement of the transient response time may be captured 
using the theory of generalized extreme value distributions.

Introduction

In recent years, researchers have been interested in analyzing the connection 
topologies of networks such as neural networks, social networks, and many 
other self-organized systems. It is believed that complex functional behavior of 
various areas of animal cortex can be understood from the dynamical properties 
of relevant neurobiology networks. Identical dynamical systems coupled with 
simple geometrically regular methods and static architecture are the most 
studied networks. Strogatz [3] did much work on network patterns and came up 
with the concept of a small world network, of which most of the connections are 
local, and a few long distance connections are sprinkled in a random manner.  
A nearest neighbor coupling network has the drawback of long transients. Thus 
phase shifts may be completed in weeks instead of days. Xiao and Chen [4] have 
shown that adding a few long distance interconnections dramatically accelerates 
the transient response. Even if we were to fix the number of long distance 
connections to some small number, still the search space required to enumerate 
all possible connections is rather large. Therefore, it is typical to assign long 
distance connections in a random manner.
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One of the problems that has not been solved is how to quantify the effects of 
long distance connections on the transient response times of a small world 
network. Simulations [4] have shown time and again, that a few generic long 
distance connections have the same effect in reducing transients as a dozen or so 
nearest neighbor connections. Yet no deterministic or probabilistic models exist 
that can accurately predict this differential effect. It is desirable to devise a 
statistical model that captures the essence of this relationship. It is well known in 
linear systems theory that the transient dynamics of a system can be related to a 
dominant eigenvalue of the system [5].

The SCN system we analyze here shows a nonlinear behavior which is modelled 
by Achermann and Kunz [6]. Eigenvalues of the linearized model determine the 
resynchronization time. Let 

1
represent the eigenvalue with the largest real part 

(dominant eigenvalue). Phase locking requires that 
1Re 0 .Engineers 

typically take resynchronization time to be 
13Re . Thus, a critical item for 

understanding the behavior of the network is an estimate of the real part of 
1
. It 

is believed in physiology that each cell interacts mostly with its neighbors, and 
to a lesser extent with some far away cells. This ambiguity of connections 
patterns in the SCN makes the task of estimating 

1
harder, but far more 

interesting.

If long distance connections are formed in a probabilistic manner, then each of 
the relevant eigenvalues can be thought of as a random variable; hence the 
dominant eigenvalue is related to the order statistics of a random vector. Thus, it 
is important to find details of the probability distribution of the dominant 
eigenvalue. In an actual biological network, the structure may be far too 
complex to carry out any useful analysis. Therefore, we assume the network 
structure is that of a symmetrically coupled oscillator network and perform 
basics of such an analysis. For illustration, we will consider a network of 
oscillators arranged in a ring, and interconnections between oscillators are 
assumed to have a cyclic symmetry. Indeed this type of network has been used 
to model mammalian circadian rhythms in [6].

In 1982, Kronauer [7] proposed a mathematical model based on the Van der Pol 
oscillator for simulating the effects of light on the amplitude and phase of the 
circadian pacemaker in mammals. It identifies light is an external stimulus that 
shifts the phase of the pacemaker. Since the ambient light intensity oscillates 
with a precise period of 24 hours, the resulting model consists of a nonlinear
oscillator with a 24.3 hour intrinsic period, driven by an external oscillatory 
input with a 24 hour period. Kronauer's model represents the entire SCN as a 
two dimensional dynamical system. In 1999, Achermann and Kunz [6] refined  
Kronauer's model by representing each SCN cell as a Kronauer oscillator, and 
added  coupling terms between oscillators to represent dynamic interactions with  
other SCN neurons. Their numerical simulations showed that the network is 
indeed capable of achieving synchrony.
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Although the exact interconnectivity neuron is unknown, mathematical 
modeling of the circadian clock provides framework for understanding available 
experimental observations and for performing theoretical studies. Here we will 
discuss the dynamics of a one-dimensional SCN simulation using the 
Achermann and Kunz model without the effect of ambient light, with the goal of 
quantifying the effects of random long distance connections on the transient 
time. Standard Hopf Bifurcation arguments explain how the network will
eventually achieve phase locked synchrony (see [8]). This behavior is a direct 
result of the fact that the network parameters are such that precisely one mode 
goes through Hopf bifurcation. Therefore, one may conclude that the time 
elapsed before resynchronization following a reset, e.g. jet lag, is equal to the 
time for the transient dynamics of other modes to die out. 

Here we derive approximate expressions for the dominant eigenvalue in terms of 
the probability distribution of the long distance connections. We assume that the 
connection pattern consists of a fixed number of nearest connections and a fixed 
number of randomly arranged long distance connections. In the case when the 
number of nearest neighbor connections is reasonably large, it is postulated that 
the dominant eigenvalue satisfies an extreme value distribution, e.g. a Gumbel, 
Weibull, or Frechet distribution. Via a simulated neuronal network, we 
demonstrate how one may fit a statistical distribution to capture the effects of 
long distance connections on the transient dynamics of the network.  We show
how one may use the analytical expression for the dominant eigenvalue and 
Monte-Carlo methods to fit a generalized eigenvalue distribution in order to 
quantify statistical properties of the dominant eigenvalue.

Oscillators and Eigenvalues

Here we consider a network consisting of N nonlinear oscillators arranged into 
the form of a ring. Each of the oscillators represents a neuron and is represented 
by a van der Pol oscillator. The thi neuron is assumed to communicate with a 
subset of the remaining neurons, and the entire network is assumed to be circular 
symmetric. The state of the thi neuron is designated by the scalar variables ix .

and iy . Following Acherman and Kunz we represent the network dynamics in 
the absence of light inputs by,

3

1

2 1
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3
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where ò, c , and 1{ }N
a a are positive constants, and 1, , .i N Here c is 

referred to as the coupling strength, and its value is taken to be 0.5. The constant 
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ò determines the size of the periodic orbit of the Van der Pol oscillator, and its 
value is taken to be equal to 0.13. Constant l is equal to either 1 or 0

depending upon whether or not a connection of length l exists. For the sake of 
simplicity, we take 24 .

Standard computations (see e.g. [9]) can be carried out to show that the 
eigenvalues of the linearization of (1) are:

2
0

21

0
1

( /12)( / 2 1 / 4),

( /12) ( 1) ,

1, , 1,

lkN i
N

k l
l

i

c e

k N

ò ò

(2)

and the corresponding eigenvectors are ,1 ,2 ,[ , , , ]T
k k k k NV v v v , where 0,lv

is the eigenvector of an individual oscillator with no connections corresponding 
to its eigenvalue 0 , and 

2

, 0,

lki
N

k l lv v e (3)

Thus, phase locked oscillations demand that 0( ) 0 kRe for 1 1k N .
Moreover, transient response due to a resynchronization of the SCN clocks will 
be determined by time constants corresponding to the 2( 1)N stable 
eigenvalues. If we were to adopt the engineers' rule of thumb that the time it 
takes for an exponential to die out is equal to three times the time constant, then 
the transient response time can be estimated as, 

transient 1
1

3 ,
min ( )N

k k

T
Re

(4)

In the particular case when each cell is connected to its m nearest neighbors, 
we may write simplified expressions for the eigenvalues,

0

2 1

/12 2 1 .k

m k
sin

N
c m

ksin
N

(5)

This expression demonstrates the main problem associated with the nearest 
neighbor only type of connections. 
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Figure 1

k vs 0 k plot for a network with 200 cells. Each cell is coupled to 10 
nearest neighbors on either side.

A typical plot of 0 k is shown in Figure 1 in which there are 200 cells in a
ring and each cell communicates with its ten nearest neighbors on either side. It 
is observed that most of the eigenvalues have fairly large negative real parts, 
whereas one or two of the eigenvalues have a very small negative real part, 
thereby causing a relatively slow decay of the transient dynamics. If we were to 
add just three long distance connections, one of length 100, and two of length 50 
on either side, then the expression for 0 k will have an extra additive term of 

/12 2 / 2 ( 1) 3kc cos k , which pushes the dominant eigenvalue from 

the previous position of 0.05 to the left by 0.68.
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Figure 2

k vs 0 k plot for a network with 200 cells. Each cell is coupled to its
10 nearest neighbors on either side, to cells 50 units on either side, and to 

the cell 100 units away.

The new plot with three long distance connections is shown in Figure 2.

Probability Density of Eigenvalues

As seen in the example above, a few random long distance connections are 
generally sufficient to move the dominant eigenvalue to the left by a significant 
amount in a probabilistic sense [4].

We have already observed that the transient response of the network considered 
here, i.e. a ring model of the mammalian circadian rhythm generator, can be 
directly linked to the dominant stable eigenvalue of its linearized dynamics. Let
us denote its real part by dom . From what we have seen above, dom is equal 
to, 
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21
1

dom 1 0
1

max /12 1 .
lkN iN N

k l
l

Re c e (6)

Let us assume that a certain number of nearest neighbor connections always 
exist, i.e. 1; 1, ,k k m . In addition, we assume that a certain fixed 

number, 2 p , of long distance connections exist, and the lengths of them are 
picked at random according to an a priori defined probability density function.
The set A denotes the set of indices of the corresponding long distance 
connections. In order to keep the notation and analysis simple, we allow for the 
possibility that A may contain small indices as well. Considering the fact that 
the number of oscillators is typically very large in comparison to p , the 

probability that a small index is included in A is indeed very small.

Let us assume that long distance connections are chosen independently of each
other and in accordance with a given probability density function Af , subject to 

the constraint that A satisfy symmetry, i.e. j A implies that j A .
Let kX denote the random variable 2 (2 / )cos lk N where l is distributed 

according to Af . Let kY be the sum of p independent random variables kX .

It now follows from (6) that the real part of the dominant eigenvalue dom is the 
random variable, 

1
1max /12 2 .N

dom k k kRe c Y p (7)

where k is given in (5). Thus we observe that the random variables 1{ }N
k kY

capture the probabilistic aspects of the dominant eigenvalue entirely. As noted
earlier, index [1, ]l N is picked according to the density Af . If kf were to 
denote the probability density of 2 (2 / )kX cos lk N , then kY in (7) has the 
density,

* * ,kY k k kf f fy f y (8)

where the right hand side consists of the p fold convolution operation. Since 

kX has support in [ 2, 2] , it follows that kY has support in [ 2 , 2 ]p p , and 
from (7) we observe that the probabilistic correction term of the dominant 
eigenvalue always has a stabilizing effect, and has the support in [ / 6,0]pc .

Case I: very small number of long distance connections

Calculation of kYf y in (8) is too complicated to be of much analytical 
usefulness. However,  if one studies the small world network problem from the 
viewpoint of choosing an appropriate probability density Af , then a good 
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starting point is to ensure that the probability that kY lies in a certain small 
neighborhood [2 ,2 ]p p is reasonably small (say ò). This way the 
probabilistic terms will push the dominant eigenvalue to the left by /12c
with a reasonably high probability1 ò .

If the number of long-distance connections are comparably small to the number 
of local connections, then it reasonable to assume that the conditional 
probability that 1 1( ) ( /12)( 2 ) ( ) ( /12)( 2 )k kRe c Y p Re c Y p for 

1k in (7) conditioned on the event that the probabilistic effects of p on 

dom is small. This effect is supported by the significant difference between 

1( )Re and ( )kRe as seen in Figure 1. There we approximate,

1 1( ) ( /12)( 2 )dom Re c Y p (9)
The advantage of (9) is that one may often obtain analytical expressions for the 
density of 1Y in the right end of its support, which is all we are interested in. 
This is illustrated in the following example.  

Example 1: Long distance connections are picked according to the uniform 
density function.

We assume that N is very large so that we may approximate 2 /l N by a 
continuous uniform random variable [0, 2 ] . Therefore, 1 2 ( )X cos
has density,

1

2

1 , 2,2 .
2 1 / 4

xf x
x

(10)

Since we only desire to compute the density of 1Y at values in the vicinity of 

2 ,p we need values of 1( )f x for x near 2 , which may be approximated by, 

1 12 .
2

f z
z

(11)

Using (11) we may approximate the p fold convolution of 1f to obtain the 
density of 1Y for small positive values of y as,

1

1
22 ,

p
Y

pf p y c y (12)

where pc are constants.



Journal of Mathematical Sciences & Mathematics Education Vol. 12 No. 2    21

The uniform probability law is not very appropriate for choosing long distance 
connections as it may lead to selection of long distance connections that are 
actually nearest neighbor connections. In view of the example illustrated in 
Figure 2, one may argue that a probability law Af , which will allow more 
connections toward the middle cells, i.e. connections of length close to / 2N ,
may have more of a stabilizing effect. This hypothesis is tested in Example 2. 

Example 2: Long distance connections are picked according to the density, 
( ) | ( ) | /4f sin . Now, 1 2 ( )X cos has density,

1 1 / 4, 2,2 .f xx (13)

Thus, we may approximate the p fold convolution of 1f to obtain the density 
of 1Y for small positive values of y as,

1 12 ,Y p
pf p y c y (14)

where pc are constants. By comparing exponents, it is seen that the density in 
(14) is far smaller than the density in (12) for small values of y , hence the 
probability that long distance connections may fail to have a significant 
stabilizing effect is far smaller in  Example 2 than in  Example 1.

Case II: relatively large number of long distance connections

For large number of long distance connections, it safe to assume that the 
probability of dom may correspond to some kY for 1k . However, dom

being the largest of a set of random variables, it can be conjectured that it is 
probabilistically distributed according to an extreme value distribution. Thus, we 
will be able to adopt the theory of generalized extreme value distributions. It has 
been shown that under certain mild constraints, extreme values of random 
processes fall into one of three distributions, Gumble, Frechet or Weibull. The 
key parameters which govern the behavior of these distributions are the 
location, the scale, and the shape. The definition for generalized extreme 
value distribution function are,

Gumbel: ( ) , ,z bG z exp exp z
a

Frechet:
0,

( )
,

z b

G z exp z bexp z b
a
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Weibull: ( )

1

.
z bexp z bG z exp a

z b

The three distributions can be combined into a single family of models having a 
distribution function,

1/

( ) 1 .zG z exp (15)

This family is referred to as the Generalized Extreme Value distributions, or 
GEV for short. One may carry out a parameter estimation to fit a given set of
data using standard procedures such as maximum likelihood estimation.

Figure 3

Generalized Extreme Value distribution of dom in a network with 15 
random connections of length between 0 and 15 and 10 random connections 

of length between 25 and 475 in a ring of 500 oscillators. Estimated 
parameter values are: 0.0325, 0.0081, 0.1532
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Figure 4

Generalized Extreme Value distribution of dom in a network with 25 
random connections in a ring of 500 

oscillators. 0.0501, 0.0072, 0.0761.

We have used repeated trials to compute sample values of dom in numerical 
experiments. The maximum likelihood method was used to estimate the relevant 
parameters of a GEV distribution. Figures 3 and 4 show histograms of numerical 
values of dom and their GEV fits. The network in Figure 3 consists of a SCN 
model (1) in which 10 nearest neighbor connections were placed at random, and 
their lengths were restricted to be at most 15. In addition, ten long distance 
connections were chosen at random under the restriction that their lengths must 
exceed 25. In the network in Figure 4, the same number of oscillators were used, 
but connections were limited to 30, and they were placed completely at random.

Concluding Remarks

We have given a conjecture for the distribution of highest eigenvalue and its 
distribution under various network types. We have described a means to capture 
probabilistic aspects of resynchronization time in a small world network via the 
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example of a mathematical model of the circadian rhythm generator circuitry. 
Two cases are considered; one in which the number of long distance connections 
are very small, and another in which this number is reasonably large in 
comparison to nearest neighbor type connections. An analytical mechanism is 
described to find an approximation to the probability density of the dominant 
eigenvalue in the first case. In the second case, it is argued that the Generalized 
Extreme Value distributions are a reasonable means to describe the dominant 
eigenvalues of such a network. Some numerical evidence is provided to support 
the thesis. Work is under way to provide a rigorous proof of this idea.
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