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Abstract

Several regions are defined in the Cartesian plane which are related to 
power functions of the form f(x) = rx (0 x t), where r and t are positive real 
numbers. Relationships between the areas of these regions are explored as 
functions of r and t. Additional properties of these areas and their relationships 
are investigated in the extreme cases in which r approaches zero and r 
approaches infinity.

Introduction

Basic power functions and those functions related to them possess a 
number of interesting properties and symmetries. Furthermore, exploring these 
characteristics of power functions can provide good undergraduate research 
projects for calculus students in a limited time frame. 

For example, in 2005 Richard A. Winton derived the coordinates of the 
centroid nC of the region nR in the Cartesian plane bounded by the power 

function f(x) = nx (where n is an integer; n 1; 0 x 1) and its inverse 
function )x(f 1 = n x = n1x (0 x 1) as a rational function of the exponent 
n [1, p. 230]. In particular, Winton showed that for each integer n 1, nC =

2n5n2
1n2n,

2n5n2
1n2n

2

2

2

2

. As well as an obvious symmetry in nR about the 

line y = x due to nR being bounded by a function and its inverse, the question 
of an another symmetry in nR about the line y = 1 x was raised. Such an 

additional symmetry, if it existed, would force the centroid nC to be 
2
1,

2
1 . 

Although nC
2
1,

2
1 for each integer n 1, the symmetry of nR relative to 

the line y = 1 x was established for the limiting case of C in which n 
approaches infinity [1, p. 231]. That is, 
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As another example, in 2010 Winton and Warren developed a generalized 
formula for the surface area generated by revolving a continuous curve which is 
defined over a closed, bounded interval about an arbitrary linear axis of 
revolution [2, p. 32]. More specifically, if the graph of a continuous function 
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y = f(x) (a x b) is revolved about an arbitrary linear axis L, then the resulting 
surface area generated is 

SA = 
.tmx)x(Lifdx)x(f1)x(L)x(f

1m

2

txbydefinedverticalisLifdx)x(f1tx2
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Thus in the specific case in which a power function f(x) = rx (where r is a real 
number; r 0; a x b) is revolved about a linear axis L, the surface area 
generated is 

SA = b

a

2r22r

2

b

a

2r22

tmx)x(Lifdxxr1)x(Lx
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2

txbydefinedverticalisLifdxxr1tx2

We now proceed with the primary goal of this paper. The first step will 
be to establish the specific regions in question which will be the focus of the 
investigation and their respective areas in the Cartesian plane 2R .

Basic Definitions

Throughout this paper r and t will denote positive real numbers, so that 
f(x) = rx 0 for 0 x t. In 2R , define R(r,t) to be the rectangle with 
horizontal and vertical sides circumscribed about the graph of f(x) = rx
(0 x t) at the endpoints (0,0) and rt,t . We further define A(r,t) to be the 

area between the graph of f(x) = rx (0 x t) and the x-axis, as shown in 

Figure 1 below. Consequently A(r,t) = 
t

0

dx)x(f =
t

0

r dxx =
t

0

1rx
1r

1 =

1rt
1r

1 , and so 

A(r,t) = 1rt
1r

1 . (1)

In contrast to A(r,t), we define B(r,t) to be the area between the graph of 
y = rt and the graph of f(x) = rx (0 x t), as shown in Figure 2 below. 
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Thus B(r,t) = 
t

0

r dx)x(ft =
t

0

rr dxxt =
t

0

1rr x
1r

1xt = 1rt
1r

r , so

B(r,t) = 1rt
1r

r . (2)

Alternatively, B(r,t) = 
rty

0y

r/1 dyy =

rty

0y

1
r
1

y
1

r
1

1 =

rty

0y

r
1r

y
1r

r = r
1r

rt
1r

r

= 1rt
1r

r , which agrees with (2) above.

Finally, define C(r,t) to be the area between the graph of y = rt (0 x t) 
and the x-axis, as shown in Figure 3 below. 

Hence, C(r,t) is the area of the rectangle R(r,t) defined above which is 
circumscribed about the graph of f(x) = rx (0 x t) at its endpoints 0,0 and 

rt,t . Therefore we have 

rt,t

t

x

y

Figure 3

y= rt

f(x)= rx

C(r,t)
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C(r,t) = t rt = 1rt . (3)

It is clear from Figures 1-3 that C(r,t) = A(r,t) B(r,t). This rather obvious 
relationship is formally established by the fact that from (1), (2), and (3) we 

have A(r,t) B(r,t) = 1rt
1r

1 1rt
1r

r = 1rt
1r
r1 = 1rt = C(r,t), and so 

A(r,t) B(r,t) = C(r,t). (4)

Relative Areas

Comparing the relative areas defined by A(r,t), B(r,t), and C(r,t), we have 

the following results. Firstly, by (1) and (3), we have 
)t,r(A
)t,r(C =

1r

1r

t
1r

1
t =

r 1, so that 

)t,r(A
)t,r(C = r 1, (5)

which is independent of t. Secondly, (2) and (3) imply that 
)t,r(B
)t,r(C =

1r

1r

t
1r

r
t =

r
1r , so that 

)t,r(B
)t,r(C =

r
1r , (6)

which is also independent of t. Finally, and perhaps most surprising of all, 

applying (1) and (2) produces 
)t,r(A
)t,r(B =

1r

1r

t
1r

1

t
1r

r

=
1r

r 1r = r, and so 

)t,r(A
)t,r(B = r, (7)

which again is independent of t. 
Consequently, in all three cases the ratios of these areas are independent of 

the parameter t which establishes the interval over which they are defined. 
Furthermore, within the rectangle R(r,t), the ratio of the areas B(r,t) and A(r,t) 
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above and below the power function f(x) = rx (0 x t), respectively, is simply 
r, the exponent of the power function f(x) that defines the boundary between 
B(r,t) and A(r,t).

Another observation can be made related to the power function f(x) = rx
(0 x t) which generates the rectangle R(r,t). The diagonal of R(r,t) with 
endpoints (0,0) and rt,t is defined by d(x) = xt 1r (0 x t). 

If 0 r 1 then 1 r 1 0. Since 0 x t, then 0 1rt 1rx . 
Therefore 0 xt 1r xx 1r , so that 0 d(x) f(x). Hence A(r,t) contains the 
diagonal d(x) of R(r,t), and so B(r,t) lies above d(x), except at the endpoints 
(0,0) and rt,t . Thus A(r,t) B(r,t) whenever 0 r 1. 

In a similar manner, if r 1, then r 1 0. Therefore, since 0 x t, then 
0 1rx 1rt , so that 0 xx 1r xt 1r , and so 0 f(x) d(x). Thus A(r,t) 
lies below the diagonal d(x) of R(r,t), except at the endpoints (0,0) and rt,t , 
and so A(r,t) B(r,t) whenever r 1. 

Finally, if r = 1 then the upper right vertex of the rectangle R(r,t) is (t,t). 

Furthermore, f(x) = rx = x = xt0 = xt 1r = d(x). Thus A(r,t) = )t,r(C
2
1 =

B(r,t) whenever r = 1. 
The facts of these three cases are illustrated in Figures 4, 5, and 6 below.
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y= rt (r >1)
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The facts of the three cases illustrated above in Figures 4, 5, and 6 can also 

be validated with the observation that since 
)t,r(A
)t,r(B = r by (7), then B(r,t) = 

r A(r,t). Clearly then 

B(r,t) 
)t,r(A
)t,r(A
)t,r(A

1rif
1rif

1r0if
(8)

Limiting Case for r 0

For any value of t 0, as r approaches 0, the graph of f(x) = rx (0 x t)
becomes asymptotic to the left and top boundaries of the rectangle R(r,t), which 
are defined by x = 0 and y = rt , respectively, as shown in Figure 7 below. 

This graphical observation suggests that as r approaches 0, the area A(r,t) 
approaches C(r,t) and B(r,t) approaches 0. The first conjecture is verified by the 

fact that 
0r

lim A(r,t) = 
0r

lim 1rt
1r

1 (by (1) above) = t = 
0r

lim 1rt =
0r

lim C(r,t) (by 

(3) above). Furthermore, 
0r

lim B(r,t) = 
0r

lim 1rt
1r

r (by (2) above) = 0 t = 0. 
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Limiting Case for r

On the other hand, for any value of t 0, as r approaches , the graph of 
f(x) = rx (0 x t) becomes asymptotic to the right and bottom boundaries of 
the rectangle R(r,t), which are defined by x = t and y = 0, respectively, as shown 
in Figure 8 below. 

This graphical observation suggests that as r approaches , the area B(r,t) 
approaches C(r,t) and A(r,t) approaches 0. However, this case is complicated by 
the fact that the upper right vertex of the rectangle R(r,t) has second coordinate 

rt , which may be approaching 0, 1, or as r approaches depending on the 
value of t. Thus we are compelled to more closely examine A(r,t), B(r,t), C(r,t), 
and their relative areas in the following cases.

Case 1: Suppose that 0 t 1.
Then 

r
lim rt = 0 since 0 t 1, and so 

r
lim rt,t = (t,0), where rt,t is the 

upper right vertex of the rectangle R(r,t). Thus as r approaches , the rectangle 
R(r,t) flattens against the x-axis with area C(r,t) approaching 0. Since 0 A(r,t) 

C(r,t) and 0 B(r,t) C(r,t), then A(r,t) and B(r,t) also approach 0 as r 
approaches . These graphical observations are formally validated as follows.

rt,t

t

x

y

Figure 8

f(x)= rx

y= rt

R(r,t)



Journal of Mathematical Sciences & Mathematics Education Vol. 14 No. 1    10

Since 
r
lim

1r
1 = 0 and 

r
lim 1rt = 0 (since 0 t 1), then 

r
lim A(r,t) = 

r
lim 1rt

1r
1 (by (1) above) = 

r
lim

1r
1

r
lim 1rt = 0 0 = 0. Furthermore, 

r
lim

1r
r = 1, so that 

r
lim B(r,t) = 

r
lim 1rt

1r
r (by (2) above) = 

r
lim

1r
r

r
lim 1rt = 1 0 = 0. Finally, 

r
lim C(r,t) = 

r
lim 1rt (by (3) above) = 0. 

Thus the graphical suggestion above that B(r,t) approaches C(r,t) and 
A(r,t) approaches 0 as r approaches is actually correct since all three areas 
approach 0.

Case 2: Suppose that t = 1.
Then 

r
lim rt =

r
lim r1 = 1, and so the upper right vertex rt,t of R(r,t) 

approaches 
r
lim rt,t = (1,1) as r approaches . Consequently, the rectangle 

R(r,t) approaches the unit square with opposite vertices (0,0) and (1,1) and area 
C(r,t) = 1. Similar to the approach in Case 1 above, we pursue the following 
limits.

Since 
r
lim

1r
1 = 0 and 

r
lim 1rt =

r
lim 1r1 = 1, then 

r
lim A(r,t) =

r
lim 1rt

1r
1 (by (1) above) = 

r
lim

1r
1

r
lim 1rt = 0 1 = 0. Furthermore, 

r
lim

1r
r = 1, so that 

r
lim B(r,t) = 

r
lim 1rt

1r
r (by (2) above) = 

r
lim

1r
r

r
lim 1rt = 1 1 = 1. Finally, 

r
lim C(r,t) = 

r
lim 1rt (by (3) above) = 

r
lim 1r1 = 1. 

Thus 
r
lim B(r,t) = 1 = 

r
lim C(r,t) and 

r
lim A(r,t) = 0. Hence the graphical 

suggestion above that B(r,t) approaches C(r,t) and A(r,t) approaches 0 as r 
approaches is again correct.

Case 3: Suppose that t 1.
Then 

r
lim rt = since t 1, and so the upper right vertex rt,t of the 

rectangle R(r,t) becomes arbitrarily far above the x-axis. Thus as r approaches , 
R(r,t) approaches infinite height with constant width t, so that the area C(r,t) of 
R(r,t) approaches . Since 0 A(r,t) C(r,t) and 0 B(r,t) C(r,t), then A(r,t), 
B(r,t), or both may approach as r approaches . In order to resolve these 
issues rigorously, we pursue the following limits similar to the approach in 
Case 1 and Case 2 above.
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Since 
r
lim 1r = and 

r
lim 1rt = (since t 1), then 

r
lim A(r,t) = 

r
lim 1rt

1r
1 (by (1) above) = 

r
lim

1r
t 1r

=
r
lim

1r
dr
d

t
dr
d 1r

(by L’Hospital’s Rule) 

=
r
lim tlnt 1r = tln

r
lim 1rt = (since t 1 implies that 

r
lim 1rt = and 

tln 0). Furthermore, 
r
lim B(r,t) = 

r
lim 1rt

1r
r (by (2) above) = 

r
lim

1r
tr 1r

=

r
lim

1r
dr
d

tr
dr
d 1r

(by L’Hospital’s Rule) = 
r
lim tlnr1t 1r = (since t 1

implies that 
r
lim 1rt = and 

r
lim tlnr1 = ). Finally, 

r
lim C(r,t) = 

r
lim 1rt

(by (3) above) = since t 1. 
Therefore the conjecture motivated by the graphical evidence above that 

B(r,t) approaches C(r,t) and A(r,t) approaches 0 as r approaches cannot be 
validated in this case since all three limits diverge. However, we can achieve a 
sense of these relationships through the relative areas established in (5), (6), and 

(7). With this approach, we have 
r
lim

)t,r(C
)t,r(B =

r
lim

1r
r (by (6) above) = 1, 

r
lim

)t,r(B
)t,r(A =

r
lim

r
1 (by (7) above) = 0, and 

r
lim

)t,r(C
)t,r(A =

r
lim

1r
1 (by (5) 

above) = 0. Thus the area B(r,t) relative to C(r,t) approaches 1 as r approaches 
. Furthermore, the area A(r,t) relative to either B(r,t) or C(r,t) approaches 0 as r 

approaches . Hence some degree of validation for the conjecture stated above 
that B(r,t) approaches C(r,t) and A(r,t) approaches 0 as r approaches is 
established for the case in which t 1.

Concluding Remarks

As mentioned above, the 2005 result by Winton on the centroid of the finite 
region bounded by a power function and its inverse [1, pp. 228 231] constitutes 
a good undergraduate research project for a calculus student. Furthermore, the 
specific application to power functions can easily be extended to other types of 
functions and their inverses, provided that the regions bounded are finite and 
reasonable.

Similarly, the results of this paper are specific to power functions. Thus an 
analogous investigation for a different class of functions or a specific function 
from a different class could be used as an undergraduate research project for a 
calculus student. Consequently, the results of this paper and the 2005 paper by
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Winton which are specific to power functions can possibly be generalized to 
include other functions.

The 2010 result by Winton and Warren for the generalized surface area 
of revolution of an arbitrary continuous function about an arbitrary linear axis in
the Cartesian plane [2, pp. 25 33] can also be used as an undergraduate research 
project for a calculus student. However, in contrast to the two preceding 
projects, the more general result of that paper can be investigated for special 
cases of specific functions or particular linear axes of revolution.

† Richard Winton, Ph.D., Tarleton State University, USA
‡ Sarah S. Horner, PE, Texas Department of Transportation, USA
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