Polygons on sides of octagons

Rogério César dos Santos, Ph.D. \dagger

Abstract

Van Aubel's theorem has some interesting generalizations. Some were dealt with by Krishna (2018a and 2018b). In this article, we intend, encouraged by the works cited, to prove a new generalization of Van Aubel's theorem, which consists of the construction of a parallelogram from an octagon surrounded by regular n-sided polygons.

The present article will demonstrate the following result about octagons, driven by the results of Krishna (2018a) and Krishna (2018b): Theorem: Take a random octagon $O: A_{1} A_{2} \ldots A_{8}$, either convex or concave. Having fixed an integer $n \geq 3$, consider the eight regular polygons of n sides constructed externally on the sides of O. Denote the sixteen sides of the eight polygons that have the common vertex A_{j} with the octagon, $j=1, \ldots, 8$, by $A_{1} B_{82}, A_{1} B_{11}, A_{2} B_{12}, A_{2} B_{21}, \ldots, A_{8} B_{72}$ and $A_{8} B_{81}$, as illustrated in figure 1. Denote the midpoints of these sides by $C_{11}, C_{12}, C_{21}, C_{22}, \ldots, C_{81}$ and C_{82}, respectively. The figure shows only three of the regular polygons so that the image is not overloaded.

Figure 1 - Regular polygons of n sides on sides of a random octagon
Also consider
$D_{j}=\frac{C_{j 1}+C_{j 2}}{2}, j=1, \ldots, 8 \bmod 8$
the midpoints of segments $C_{j 1} C_{j 2}$ and
$E_{j}=\frac{D_{j}+D_{j+1}}{2}$
the midpoints of $D_{j} D_{j+1}$.
Under these conditions, the midpoints of $E_{j} E_{j+4}, j=1, \ldots, 8 \bmod 8$, denoted by I, J, K and L, respectively, form a parallelogram, as shown in figure 2 .

Figure 2 - The parallelogram $I J K L$
Proof: Let us demonstrate it by denoting the points I, J, K and L as a function of the coordinates of the vertices of the octagon. Considering $A_{j}=\left(x_{j}, y_{j}\right)$ each vertex of the octagon in the Cartesian Plane, $j=1, \ldots, 8$, denote the complex number corresponding to each A_{j} by $a_{j}=x_{j}+i y_{j}$, where $i^{2}=-1$. Similarly, denote the complex numbers corresponding to the points B_{j}, C_{j}, D_{j} and E_{j} by b_{j}, c_{j}, d_{j} and e_{j}, respectively. Take M_{j} as the midpoint of the segment $A_{j} A_{j+1}$, so that $m_{j}=\frac{a_{j}+a_{j+1}}{2}$ is the complex number corresponding to M_{j}.

Considering $\hat{A}=B_{11} \hat{A}_{1} A_{2}$ the internal angle of each of the eight regular polygons, then, through the hypotheses, we can conclude that $c_{12}-a_{1}$ is equal to the complex number resulting from the rotation of $m_{1}-a_{1}$ by \hat{A} degrees counterclockwise. Namely,

$$
c_{12}-a_{1}=\left(m_{1}-a_{1}\right)(\cos \hat{A}+i \sin \hat{A})
$$

From now on let us denote $\operatorname{cis}(\hat{A})=\cos \hat{A}+i \sin \hat{A}$. Then,

$$
c_{12}=a_{1}+\left(m_{1}-a_{1}\right) \operatorname{cis}(\hat{A})
$$

The complex number $c_{11}-a_{1}$ is equal to the complex number resulting from the rotation of $m_{g}-a_{1}$ by \hat{A} degrees clockwise, or $360^{\circ}-\hat{A}$ counterclockwise, that is,

$$
\begin{aligned}
& c_{11}-a_{1}=\left(m_{\mathrm{g}}-a_{1}\right) \operatorname{cis}\left(360^{\circ}-\hat{\mathrm{A}}\right) \Rightarrow \\
& c_{11}-a_{1}=\left(m_{8}-a_{1}\right)\left[\cos \left(360^{\circ}-\hat{\mathrm{A}}\right)+i \sin \left(360^{\circ}-\hat{\mathrm{A}}\right)\right]= \\
& \left(m_{\mathrm{g}}-a_{1}\right)[\cos \hat{\mathrm{A}}-i \sin (\hat{\mathrm{~A}})]= \\
& \left(m_{\mathrm{g}}-a_{1}\right)[\cos (-\hat{\mathrm{A}})+i \sin (-\hat{\mathrm{A}})]= \\
& \left(m_{\mathrm{g}}-a_{1}\right) \operatorname{cis}(-\hat{\mathrm{A}}) \\
& \Rightarrow \\
& c_{11}=a_{1}+\left(m_{\mathrm{g}}-a_{1}\right) \operatorname{cis}(-\hat{\mathrm{A}}) .
\end{aligned}
$$

Therefore, we can find

$$
\begin{aligned}
& d_{1}=\frac{c_{11}+c_{12}}{2}=\frac{1}{2}\left[a_{1}+\left(m_{8}-a_{1}\right) \operatorname{cis}(-\hat{\mathrm{A}})+a_{1}+\left(m_{1}-a_{1}\right) \operatorname{cis}(\hat{\mathrm{A}})\right]= \\
& \frac{1}{2}\left[a_{1}+\left(\frac{a_{2}+a_{1}}{2}-a_{1}\right) \operatorname{cis}(-\hat{\mathrm{A}})+a_{1}+\left(\frac{a_{1}+a_{2}}{2}-a_{1}\right) \operatorname{cis}(\hat{\mathrm{A}})\right]= \\
& \frac{1}{2}\left[2 a_{1}+\frac{a_{8}-a_{1}}{2} \operatorname{cis}(-\hat{\mathrm{A}})+\frac{a_{2}-a_{1}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] .
\end{aligned}
$$

Similarly, we can find

$$
\begin{aligned}
& d_{2}=\frac{c_{21}+c_{22}}{2}= \\
& \frac{1}{2}\left[2 a_{2}+\frac{a_{1}-a_{2}}{2} \operatorname{cis}(-\hat{\mathrm{A}})+\frac{a_{3}-a_{2}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right]
\end{aligned}
$$

Then,

$$
e_{1}=\frac{d_{1}+d_{2}}{2}=\frac{1}{4} \times
$$

$$
\left[2 a_{1}+\frac{a_{8}^{2}-a_{1}}{2} \operatorname{cis}(-\hat{\mathrm{A}})+\frac{a_{2}-a_{1}}{2} \operatorname{cis}(\hat{\mathrm{~A}})+2 a_{2}+\frac{a_{1}-a_{2}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.
$$

$$
\left.+\frac{a_{3}-a_{2}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right]
$$

$$
\begin{aligned}
& = \\
& \frac{1}{4} \times\left[2\left(a_{1}+a_{2}\right)+\frac{a_{8}-a_{2}}{2} \operatorname{cis}(-\hat{\mathrm{A}})+\frac{a_{3}-a_{1}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] .
\end{aligned}
$$

Similarly, we obtain

$$
e_{5}=\frac{1}{4} \times\left[2\left(a_{5}+a_{6}\right)+\frac{a_{4}-a_{6}}{2} \operatorname{cis}(-\hat{\mathrm{A}})+\frac{a_{7}-a_{5}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] .
$$

Thus,

$$
I=\frac{e_{1}+e_{5}}{2}=\frac{1}{8} \times
$$

$$
\begin{gathered}
{\left[2\left(a_{1}+a_{2}+a_{5}+a_{6}\right)+\frac{a_{8}+a_{4}-a_{2}-a_{6}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
\left.+\frac{a_{3}+a_{7}-a_{1}-a_{5}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] .
\end{gathered}
$$

Similarly, we can obtain:

$$
\begin{aligned}
& l=\frac{e_{2}+e_{6}}{2}=\frac{1}{8} \times \\
& {\left[2\left(a_{2}+a_{3}+a_{6}+a_{7}\right)+\frac{a_{1}+a_{5}-a_{3}-a_{7}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
& \left.\quad+\frac{a_{4}+a_{8}-a_{2}-a_{6}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] \\
& K=\frac{e_{3}+e_{7}}{2}=\frac{1}{8} \times \\
& {\left[2\left(a_{3}+a_{4}+a_{7}+a_{8}\right)+\frac{a_{2}+a_{6}-a_{4}-a_{8}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
& \left.\quad+\frac{a_{5}+a_{1}-a_{3}-a_{7}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.L=\frac{e_{4}+e_{8}}{2}=\frac{1}{8} \times\right] \\
& {\left[2\left(a_{4}+a_{5}+a_{8}+a_{1}\right)+\frac{a_{3}+a_{7}-a_{5}-a_{1}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
& \left.\quad+\frac{a_{6}+a_{2}-a_{4}-a_{8}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] .
\end{aligned}
$$

Anyway, let us calculate $|J-K|=\frac{1}{8} \times$

$$
\begin{aligned}
\left\lvert\, 2\left(a_{2}+a_{6}-a_{4}-a_{8}\right)+\frac{a_{1}-a_{2}-a_{3}+a_{4}+a_{5}-a_{6}-a_{7}+a_{8}}{2}\right. & \operatorname{cis}(-\hat{\mathrm{A}}) \\
& \left.+\frac{-a_{1}-a_{2}+a_{3}+a_{4}-a_{5}^{2}-a_{6}+a_{7}+a_{8}}{2} \operatorname{cis}(\hat{\mathrm{~A}}) \right\rvert\,
\end{aligned}
$$

Remembering that

$$
\begin{aligned}
& I=\frac{1}{8} \times \\
& {\left[2\left(a_{1}+a_{2}+a_{5}+a_{6}\right)+\frac{a_{8}+a_{4}-a_{2}-a_{6}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
& \left.+\frac{a_{3}+a_{7}-a_{1}-a_{5}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right] \\
& \text { and } \\
& L=\frac{1}{8} \times \\
& {\left[2\left(a_{4}+a_{5}+a_{8}+a_{1}\right)+\frac{a_{3}+a_{7}-a_{5}-a_{1}}{2} \operatorname{cis}(-\hat{\mathrm{A}})\right.} \\
& \left.+\frac{a_{6}+a_{2}-a_{4}-a_{8}}{2} \operatorname{cis}(\hat{\mathrm{~A}})\right]
\end{aligned}
$$

we have:

$$
|I-L|=\frac{1}{8} \times
$$

$$
\begin{aligned}
\mid 2\left(a_{2}+a_{6}-a_{4}\right. & \left.-a_{8}\right)+\frac{a_{1}-a_{2}-a_{3}+a_{4}+a_{5}-a_{6}-a_{7}+a_{8}}{2} \operatorname{cis}(-\hat{\mathrm{A}}) \\
& \left.+\frac{-a_{1}-a_{2}+a_{3}+a_{4}-a_{5}-a_{6}+a_{7}+a_{8}}{2} \operatorname{cis}(\hat{\mathrm{~A}}) \right\rvert\, \\
& =|J-K| .
\end{aligned}
$$

In an analogous way, it is possible to prove that $|K-L|=|J-I|$, which concludes the demonstration.
\dagger Rogério César dos Santos, Ph.D., University of Brasília - Brazil
Docaralab Of

References

Krishna, Dasari Naga Vijay. A New Equilateral Triangle associated with Hexagon. $2018 a$.

Krishna, Dasari Naga Vijay. A note on special cases of Van Aubel's theorem. International Jounal of Advances in Applied Mathematics and Mechanics 5(4). $2018 b$.

